15 research outputs found

    \u3ci\u3eAuricularia auricula\u3c/i\u3e polysaccharides attenuate obesity in mice through gut commensal \u3ci\u3ePapillibacter cinnamivorans\u3c/i\u3e

    Get PDF
    Introduction: Auricularia auricula is a well-known traditional edible and medical fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. Nondigestible fermentable polysaccharides are identified as primary bioactive constituents of Auricularia auricula extracts. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. Methods: The effects of AAP on obesity were assessed within high-fat diet (HFD)-based mice through obesity trait analysis and metabolomic profiling. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo-germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. Results:High-fat diet (HFD) murine exposure to AAP thwarted weight gains, reduced fat depositing and enhanced glucose tolerance, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. Serum metabolome indicated these effects were associated with changes in fatty acid metabolism. Intestine-dwelling microbial population assessments discovered that AAP selectively enhanced Papillibacter cinnamivorans, a commensal bacterium with reduced presence in HFD mice. Notably, HFD mice treated with oral formulations of P. cinnamivorans attenuated obesity, which was linked to decreased intestinal lipid transportation and hepatic thermogenesis. Mechanistically, it was demonstrated that P. cinnamivorans regulated intestinal lipids metabolism and liver thermogenesis by reducing the proinflammatory response and gut permeability in a JAK-STAT signaling-related manner. Conclusion: Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders by regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal P. cinnamivorans. These results indicated AAP and P. cinnamivorans as newly identified pre- and probiotics that could serve as novel therapeutics against obesity

    Impact of Traffic Influxes: Revealing Exponential Intercontact Time in Urban VANETs

    No full text
    Intercontact time between moving vehicles is one of the key metrics in vehicular ad hoc networks (VANETs) and central to forwarding algorithms and the end-to-end delay. Due to prohibitive costs, little work has conducted experimental study on intercontact time in urban vehicular environments. In this paper, we carry out an extensive experiment involving thousands of operational taxies in Shanghai city. Studying the taxi trace data on the frequency and duration of transfer opportunities between taxies, we observe that the tail distribution of the intercontact time, that is, the time gap separating two contacts of the same pair of taxies, exhibits an exponential decay, over a large range of timescale. This observation is in sharp contrast to recent empirical data studies based on human mobility, in which the distribution of the intercontact time obeys a power law. By analyzing a simplified mobility model that captures the effect of hot areas in the city, we rigorously prove that common traffic influxes, where large volume of traffic converges, play a major role in generating the exponential tail of the intercontact time. Our results thus provide fundamental guidelines on design of new vehicular mobility models in urban scenarios, new data forwarding protocols and their performance analysis

    Construction of Photoinitiator Functionalized Spherical Nanoparticles Enabling Favorable Photoinitiating Activity and Migration Resistance for 3D Printing

    No full text
    A straight-forward method was exploited to construct a multifunctional hybrid photoinitiator by supporting 2-hydroxy-2-methylpropiophenone (HMPP) onto a nano-silica surface through a chemical reaction between silica and HMPP by using (3-isocyanatopropyl)-triethoxysilane (IPTS) as a bridge, and this was noted as silica-s-HMPP. The novel hybrid-photoinitiator can not only initiate the photopolymerization but also prominently improve the dispersion of nanoparticles in the polyurethane acrylate matrix and enhance the filler-elastomer interfacial interaction, which results in excellent mechanical properties of UV-cured nanocomposites. Furthermore, the amount of extractable residual photoinitiators in the UV-cured system of silica-s-HPMM shows a significant decrease compared with the original HPMM system. Since endowing the silica nanoparticle with photo-initiated performance and fairly lower mobility, it may lead to a reduction in environmental contamination compared to traditional photoinitators. In addition, the hybrid-photoinitiator gives rise to an accurate resolution object with a complex construction and favorable surface morphology, indicating that multifunctional nanosilica particles can be applied in stereolithographic 3D printing

    Macrophages in Glioblastoma Development and Therapy: A Double-Edged Sword

    No full text
    Glioblastoma (GBM) is one of the leading lethal tumors, featuring aggressive malignancy and poor outcome to current standard temozolomide (TMZ) or radio-based therapy. Developing immunotherapies, especially immune checkpoint inhibitors, have improved patient outcomes in other solid tumors but remain fatigued in GBM patients. Emerging evidence has shown that GBM-associated macrophages (GAMs), comprising brain-resident microglia and bone marrow-derived macrophages, act critically in boosting tumor progression, altering drug resistance, and establishing an immunosuppressive environment. Based on its crucial role, evaluations of the safety and efficacy of GAM-targeted therapy are ongoing, with promising (pre)clinical evidence updated. In this review, we summarized updated literature related to GAM nature, the interplay between GAMs and GBM cells, and GAM-targeted therapeutic strategies

    Recognizing exponential inter-contact time in VANETs

    No full text
    Abstract-Inter-contact time between moving vehicles is one of the key metrics in vehicular ad hoc networks (VANETs) and central to forwarding algorithms and the end-to-end delay. Due to prohibitive costs, little work has conducted experimental study on inter-contact time in urban vehicular environments. In this paper, we carry out an extensive experiment involving thousands of operational taxies in Shanghai city. Studying the taxi trace data on the frequency and duration of transfer opportunities between taxies, we observe that the tail distribution of the intercontact time, that is the time gap separating two contacts of the same pair of taxies, exhibits a light tail such as one of an exponential distribution, over a large range of timescale. This observation is in sharp contrast to recent empirical data studies based on human mobility, in which the distribution of the inter-contact time obeys a power law. By performing a least squares fit, we establish an exponential model that can accurately depict the tail behavior of the inter-contact time in VANETs. Our results thus provide fundamental guidelines on design of new vehicular mobility models in urban scenarios, new data forwarding protocols and their performance analysis

    Auricularia auricula polysaccharides attenuate obesity in mice through gut commensal Papillibacter cinnamivorans

    No full text
    Introduction: Auricularia auricula is a well-known traditional edible and medical fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. Nondigestible fermentable polysaccharides are identified as primary bioactive constituents of Auricularia auricula extracts. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood. Methods: The effects of AAP on obesity were assessed within high-fat diet (HFD)-based mice through obesity trait analysis and metabolomic profiling. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo-germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling. Results: High-fat diet (HFD) murine exposure to AAP thwarted weight gains, reduced fat depositing and enhanced glucose tolerance, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. Serum metabolome indicated these effects were associated with changes in fatty acid metabolism. Intestine-dwelling microbial population assessments discovered that AAP selectively enhanced Papillibacter cinnamivorans, a commensal bacterium with reduced presence in HFD mice. Notably, HFD mice treated with oral formulations of P. cinnamivorans attenuated obesity, which was linked to decreased intestinal lipid transportation and hepatic thermogenesis. Mechanistically, it was demonstrated that P. cinnamivorans regulated intestinal lipids metabolism and liver thermogenesis by reducing the proinflammatory response and gut permeability in a JAK-STAT signaling-related manner. Conclusion: Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders by regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal P. cinnamivorans. These results indicated AAP and P. cinnamivorans as newly identified pre- and probiotics that could serve as novel therapeutics against obesity

    Effects of Dietary Cottonseed Oil and Cottonseed Meal Supplementation on Liver Lipid Content, Fatty Acid Profile and Hepatic Function in Laying Hens

    No full text
    Antinutrients, such as cyclopropene fatty acids (CPFAs) and free gossypol (FG), present together in cottonseed have caused numerous adverse effects on liver health and egg quality of laying hens, which are both likely to be related to a disturbance in lipid metabolism. This experiment employed a 3 × 3 factorial arrangement using corn–soybean-meal-based diets supplemented with different levels of cottonseed oil (0%, 2%, or 4% CSO) containing CPFAs and cottonseed meal (0%, 6%, or 12% CSM) containing FG to elucidate the effects of them or their interaction on fatty acid profile, lipid content, and liver health of laying hens. An overall increase in fatty acid saturation and an overall significant decrease (p < 0.05) in monounsaturated fatty acids (MUFAs) were shown in the livers of hens fed diets with either 2% or 4% CSO. Meanwhile, the concentration of liver cholesterol, serum cholesterol, and serum LDL-c of hens fed a diet supplemented with a high level of CSO (4%) were noticeably increased (p < 0.05). Even though the supplementation of 4% CSO in diets aroused beneficial influences on liver function, a high level of CSO inclusion in laying hens’ diets is not recommended due to its hypercholesterolemia effect. In conclusion, supplementation of CSO, which contains 0.20% CPFAs, was the primary cause of alteration in fatty acid composition and cholesterol content in hens, while no interaction between CSM and CSO nor CSM effect was found for lipid profile and liver health in laying hen

    Refined cottonseed oil as a replacement for soybean oil in broiler diet

    No full text
    With the shortage of common vegetable fat sources, such as soybean oil (SBO), it is urgent to find alternative oil sources for broiler producers. The objective of this study was to evaluate the potential of refined cottonseed oil (CSO) as a replacement for SBO in broiler diets. A total of 180 chickens at 1 d of age were randomly assigned to five treatments of six replicates. One treatment was the basal diet (control), and the other four experimental diets were formulated from the basal diet by replacing (w/w) 25%, 50%, 75%, and 100% of the SBO with refined CSO (only containing 0.2% cyclopropenoid fatty acids, and no free gossypol was detected). At the end of week 6, blood samples were obtained from the jugular vein and the breast muscle was aseptically isolated from two birds per replicate. The results showed that substitution of CSO for low‐level SBO had no significant effect (p > 0.05) on broiler performance during the starter period (week 1–3), while 50% level of CSO inclusion significantly increased (p < 0.05) ADG and improved FCR compared with the control group during the finisher period (week 4–6). Broilers fed 100% CSO diets had lower (p < 0.05) levels of serum total protein (TP), albumin (ALB), cholesterol (CHO) concentrations, and serum alkaline phosphatase (AKP) activity than that of the control broilers. Furthermore, the serum antioxidant status appeared to be enhanced by CSO. Additionally, high levels of CSO (75 and 100%) significantly increased the proportions of C14:0 and C18:0 but decreased the proportions of C18:1n9t, C18:2n6c, and ∑ n‐6 polyunsaturated fatty acids in breast muscles of broilers. Overall, the SBO could be replaced with refined CSO up to 50% in diets for broilers without adversely affecting the performance, liver functions, and breast muscle fatty acid composition of these broilers
    corecore