64,770 research outputs found

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Far-infrared vibrational properties of tetragonal C60 polymer

    Get PDF
    We report high-resolution far-infrared transmittance measurements and quantum-molecular-dynamics calculations of the two-dimensional tetragonal (7) high-temperature/high-pressure C-60 polymer, as a complement to our previous work on the C-60 dimer, and the one-dimensional orthorhombic (O) and two-dimensional rhombohedral (R) C-60 Polymers [V. C. Long et at., Phys. Rev. B 61, 13 191 (2000)]. The spectral features are assigned as intramolecular modes according to our quantum-molecular-dynamics calculations. In addition, we determine the I-h C-60 parent symmetry of each polymer vibrational mode by expanding the calculated polymer eigenvectors in terms of our calculated eigenvectors for I-h C-60. We find that many of the T-polymer vibrational modes are derived from more than one I-h C-60 parent symmetry, confirming that a weak perturbation model is inadequate for these covalently bonded C-60 balls. In particular, strongly infrared-active T-polymer modes with frequencies of 606 and 610 cm(-1) are found to be derived from a linear combination of three or more I-h C-60 parent modes. As in the O and R polymers, modes of the T polymer with substantial T-1u(2) character, which are polarized in the stretched directions, are found to have large downshifts. Finally, in our comparison of theory with experiment, we find indications that the in-plane lattice of the T polymer may not actually be square

    Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization

    Full text link
    We use local and global magnetometry measurements to study the influence of magnetic domain width w on the domain-induced vortex pinning in superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic Co/Pt multilayer with perpendicular magnetic anisotropy, with an insulating layer to eliminate proximity effect. The quasi-periodic domain patterns with different and systematically adjustable width w, as acquired by a special demagnetization procedure, exert tunable vortex pinning on a superconducting layer. The largest enhancement of vortex pinning, by a factor of more than 10, occurs when w ~ 310 nm is close to the magnetic penetration depth.Comment: 5 pages, 3 figures, accepted to Phys. Rev. B, Rapid Communication

    Heavy Pentaquarks

    Full text link
    We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the JP=12+J^P={1\over 2}^+ or 32+{3\over 2}^+ heavy pentaquarks. We emphasize the difference in the predictions of these models. Future experimental searches at BESIII, CLEOc, BELLE, and LEP may find these interesting states
    corecore