53 research outputs found

    Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops

    Get PDF
    Salinity stress is one of the most vital abiotic stresses which results in significant damages of agricultural production, particularly in arid and semi-arid areas of the world. Salinity causes by high accumulation of soluble salt, especially NaCl in soil and water. Salinity hampers the growth and survival of many field crops such as rice, wheat, maize, cotton, sugarcane, and sorghum. It affects the plant growth by three ways such as osmotic stress linked with an increase of phytotoxic ions, ionic stress e in the cytosol, and oxidative stress facilitated by reactive oxygen species (ROS). These stresses caused by salinity hinder the water uptake, causes ion imbalance, ROS production, and hormonal imbalance, and results in the decline of photosynthesis activities reduce the plant growth and final yield. However, the sensitivity of field crops depends on the nature of cultivar and growth stages. There are many strategies to cope with salinity stress which are the development of salinity tolerant crop cultivators by using genetic and molecular techniques such as QTLs and CRISPR CAS9 technique, nutrients management strategies, use of hormones regulators (AVG, 1-MCP, D-31). This chapter will give a brief idea to the scientist to understand the effects of salinity on field crops and their management strategies

    Role of the ortho-bridge system in the length unstable subtrochanteric femur fracture in school going children: a retrospective clinical study of 19 cases

    Get PDF
    BackgroundTreating subtrochanteric femur fractures in pediatric patients remains challenging, and an optimal fixation device has yet to be established. This study aimed to asess the clinical and radiological outcomes of Ortho-Bridge System (OBS) treatment for length-unstable subtrochanteric femur fractures in children aged 5–16 years.MethodsWe conducted a retrospective review of pediatric patients with subtrochanteric femur fractures treated with OBS between January 2018 and December 2021. The study included 19 children (12 boys, 7 girls) with an average age of 10.4 ± 2.6 years. Two of the patients had pathological fractures associated with aneurysmal bone cyst. Demographic information, mechanism of accident, fracture type, associated neurovascular injuries, surgical duration and blood loss, were collected from the hospital database. Time to union and postoperative complications were recorded. Clinical and radiological outcomes were assessed using the Harris scoring system at the latest follow-up.ResultsInjuries resulted from vehicle accidents in 10 patients (52.6%), falls over 3 meters in height in 3 patients (15.8%), and sports-related injuries in 6 patients (31.6%). The average patient weight was 41.5 kg (range: 21–78). Of the fractures, 14 (73.7%) were complex, and 5 (26.3%) were spiral. The average surgical duration was 111 min (range: 90–180), and the average surgical blood loss was 134 ml (range: 70–300). The mean time to union was 12.7 weeks (range: 8–16). No cases of infection, malunion, implant failure, or femoral head osteonecrosis were reported. Leg length discrepancy of 10 mm was observed in one patient. All patients achieved excellent results according to the Harris scoring system.ConclusionThis study suggests that the OBS may serve as an effective alternative fixation option for managing length-unstable subtrochanteric femur fractures in school-aged children

    1-Methylcyclopropene Modulates Physiological, Biochemical, and Antioxidant Responses of Rice to Different Salt Stress Levels

    Get PDF
    Salt stress in soil is a critical constraint that affects the production of rice. Salt stress hinders plant growth through osmotic stress, ionic stress, and a hormonal imbalance (especially ethylene), therefore, thoughtful efforts are needed to devise salt tolerance management strategies. 1-Methylcyclopropene (1-MCP) is an ethylene action inhibitor, which could significantly reduce ethylene production in crops and fruits. However, 1-MCPs response to the physiological, biochemical and antioxidant features of rice under salt stress, are not clear. The present study analyzed whether 1-MCP could modulate salt tolerance for different rice cultivars. Pot culture experiments were conducted in a greenhouse in 2016–2017. Two rice cultivars, Nipponbare (NPBA) and Liangyoupeijiu (LYP9) were used in this trial. The salt stress included four salt levels, 0 g NaCl/kg dry soil (control, CK), 1.5 g NaCl/ kg dry soil (Low Salt stress, LS), 4.5 g NaCl/kg dry soil (Medium Salt stress, MS), and 7.5 g NaCl/kg dry soil (Heavy Salt stress, HS). Two 1-MCP levels, 0 g (CT) and 0.04 g/pot (1-MCP) were applied at the rice booting stage in 2016 and 2017. The results showed that applying 1-MCP significantly reduced ethylene production in rice spikelets from LYP9 and NPBA by 40.2 and 23.9% (CK), 44.3 and 28.6% (LS), 28 and 25.9% (MS), respectively. Rice seedlings for NPBA died under the HS level, while application of 1-MCP reduced the ethylene production in spikelets for LYP9 by 27.4% compared with those that received no 1-MCP treatment. Applying 1-MCP improved the photosynthesis rate and SPAD value in rice leaves for both cultivars. 1-MCP enhanced the superoxide dismutase production, protein synthesis, chlorophyll contents (chl a, b, carotenoids), and decreased malondialdehyde, H2O2, and proline accumulation in rice leaves. Application of 1-MCP also modulated the aboveground biomass, and grain yield for LYP9 and NPBA by 19.4 and 15.1% (CK), 30.3 and 24% (LS), 26.4 and 55.4% (MS), respectively, and 34.5% (HS) for LYP9 compared with those that received no 1-MCP treatment. However, LYP9 displayed a better tolerance than NPBA. The results revealed that 1-MCP could be employed to modulate physiology, biochemical, and antioxidant activities in rice plants, at different levels of salt stress, as a salt stress remedy

    The Implications of Relationships between Human Diseases and Metabolic Subpathways

    Get PDF
    One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the “k-clique” subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN). Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play significantly differential roles on the diversity of diseases caused by the corresponding subpathway

    Nitric oxide synthase-mediated early nitric oxide burst alleviates water stress-induced oxidative damage in ammonium-supplied rice roots

    No full text
    Abstract Background Nutrition with ammonium (NH4 +) can enhance the drought tolerance of rice seedlings in comparison to nutrition with nitrate (NO3 −). However, there are still no detailed studies investigating the response of nitric oxide (NO) to the different nitrogen nutrition and water regimes. To study the intrinsic mechanism underpinning this relationship, the time-dependent production of NO and its protective role in the antioxidant defense system of NH4 +- or NO3 −-supplied rice seedlings were studied under water stress. Results An early NO burst was induced by 3 h of water stress in the roots of seedlings subjected to NH4 + treatment, but this phenomenon was not observed under NO3 − treatment. Root oxidative damage induced by water stress was significantly higher for treatment with NO3 − than with NH4 + due to reactive oxygen species (ROS) accumulation in the former. Inducing NO production by applying the NO donor 3 h after NO3 − treatment alleviated the oxidative damage, while inhibiting the early NO burst by applying the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) increased root oxidative damage in NH4 + treatment. Application of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester(L-NAME) completely suppressed NO synthesis in roots 3 h after NH4 + treatment and aggravated water stress-induced oxidative damage. Therefore, the aggravation of oxidative damage by L-NAME might have resulted from changes in the NOS-mediated early NO burst. Water stress also increased the activity of root antioxidant enzymes (catalase, superoxide dismutase, and ascorbate peroxidase). These were further induced by the NO donor but repressed by the NO scavenger and NOS inhibitor in NH4 +-treated roots. Conclusion These findings demonstrate that the NOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by water stress by enhancing the antioxidant defenses in roots supplemented with NH4 +

    Danlou Recipe promotes cholesterol efflux in macrophages RAW264.7 and reverses cholesterol transport in mice with hyperlipidemia induced by P407

    No full text
    Abstract Introduction Liver X Receptor (LXR) agonists could attenuate the development of atherosclerosis but bring excess lipid accumulation in the liver. Danlou Recipe was believed to be a benefit for improving the lipid profile. Thus, it is unclear whether Danlou Recipe could attenuate hyperlipidemia without excess lipid accumulated in the liver of mice. This study aimed to clarify if Danlou Recipe could alleviate the progression of hyperlipidemia in mice without extra lipids accumulated in the liver. Methods Male murine macrophage RAW264.7 cells and murine peritoneal macrophages were used for the in vitro experiments. Cellular cholesterol efflux was determined using the fluorescent cholesterol labeling method. Those genes involved in lipid metabolism were evaluated by qRT‐PCR and western blotting respectively. In vivo, a mouse model of hyperlipidemia induced by P407 was used to figure out the effect of Danlou Recipe on reverse cholesterol transport (RCT) and hyperlipidemia. Ethanol extract of Danlou tablet (EEDL) was prepared by extracting the whole powder of Danlou Prescription from ethanol, and the chemical composition was analyzed by ultra-performance liquid chromatography (UPLC). Results EEDL inhibits the formation of RAW264.7 macrophage-derived foam cells, and promotes ABCA1/apoA1 conducted cholesterol efflux in RAW264.7 macrophages and mouse peritoneal macrophages. In the P407-induced hyperlipidemia mouse model, oral administration of EEDL can promote RCT in vivo and improve fatty liver induced by a high-fat diet. Consistent with the findings in vitro, EEDL promotes RCT by upregulating the LXR activities. Conclusion Our results demonstrate that EEDL has the potential for targeting RCT/LXR in the treatment of lipid metabolism disorders to be developed as a safe and effective therapy

    Biochar Application Alleviated Rice Salt Stress via Modifying Soil Properties and Regulating Soil Bacterial Abundance and Community Structure

    No full text
    Increased soil salinity significantly inhibits crop production worldwide, and biochar may alleviate salt stress. In the present study, the application of biochar significantly increased the biomass of rice under salt stress treatment. The analysis of soil properties demonstrated that biochar application significantly decreased electrical conductivity and soluble Na+ and Cl− contents in the soil under salt stress. In addition, biochar application increased the soil cation exchange capacity, soil organic matter, humic acid, total nitrogen, and total phosphorus contents in the soil, suggesting that biochar improved the soil nutrient conditions. The application of biochar further increased the abundance of soil bacteria and changed the bacterial community structure under salt stress. Proteobacteria, Chloroflexi, and Acidobacteria were the top three phyla in bacterial abundance. Biochar increased Proteobacteria abundance and decreased Chloroflexi abundance, which were considered to be eutrophic bacteria and oligotrophic bacteria, respectively. Redundancy analysis showed that soil bacterial communities were mainly affected by soil pH and EC (p < 0.05). In conclusion, the application of biochar alleviated salt stress in rice via modifying soil properties and regulating the bacterial abundance and community structure
    corecore