25 research outputs found

    Imaging Evaluation of Liver Tumors in Pediatric Patients

    Get PDF
    Imaging plays crucial roles in the management of pediatric patients with suspected liver malignant tumors. Three-dimensional (3D) imaging could significantly improve the resection rate of pediatric tumors and increase the safety of the surgery. With the development of medical imaging, 3D reconstruction technology, the innovation of liver surgery and the proposal of precise hepatectomy, the intrahepatic vascular anatomy of the liver and liver segmentectomy based on that vascular anatomy have become well developed. With the analysis of 3D digital liver, we proposed a new type of liver classification system: Dong’s digital liver classification system. And we measured the normal total liver volume from neonate to aging making a reference for surgeons all around the world. And the Human Digital Liver Database was established by the Affiliated Hospital of Qingdao University and Hisense Company, aiming to collect digital liver from neonates, children, adults, and the elderly, from normal livers, livers with cancer, and simulated livers resected using Hisense CAS. Then we showed one case report of patient with giant liver tumor. With the application of Hisense CAS and our data, we successfully removed the tumor. We believe that the new techniques in imaging will help surgeons to accomplish better operations

    Diagnosis and Treatment of Hepatoblastoma: An Update

    Get PDF
    Hepatoblastoma is a rare but the most common solid tumor in children. The incidence is gradually increasing. The international collaboration among four centers in the world has greatly improved the prognosis of hepatoblastoma. They formed the Children’s Hepatic Tumor International Collaboration (CHIC) to standardize the staging system (2017 PRETEXT system) and the risk factors for tumor stratification. Multimodal therapy has become the standard for the management of hepatoblastoma, including surgical resection, liver transplantation, chemotherapy, and so on. Surgery is the primary treatment of early stage hepatoblastoma. Three-dimensional reconstruction is helpful for preoperative evaluation of large tumors, assisting extended hepatectomy for patients in PRETEXT III or IV. Neoadjuvant therapy is useful for reducing the tumor volume and increasing the resectability. Primary liver transplantation is recommended for advanced hepatoblastoma. The lungs are the most common metastatic organ, the treatment of which is critical for the patient’s long-term survival. We reviewed the recent progress in the diagnosis and treatment of hepatoblastoma

    New insights into a microvascular invasion prediction model in hepatocellular carcinoma: A retrospective study from the SEER database and China

    Get PDF
    Background and AimsThe prognosis of liver cancer is strongly influenced by microvascular infiltration (MVI). Accurate preoperative MVI prediction can aid clinicians in the selection of suitable treatment options. In this study, we constructed a novel, reliable, and adaptable nomogram for predicting MVI.MethodsUsing the Surveillance, Epidemiology, and End Results (SEER) database, we extracted the clinical data of 1,063 patients diagnosed with hepatocellular carcinoma (HCC) and divided it into either a training (n = 739) or an internal validation cohort (n = 326). Based on multivariate analysis, the training cohort data were analyzed and a nomogram was generated for MVI prediction. This was further verified using an internal validation cohort and an external validation cohort involving 293 Chinese patients. Furthermore, to evaluate the efficacy, accuracy, and clinical use of the nomogram, we used concordance index (C-index), calibration curve, and decision curve analysis (DCA) techniques.ResultsIn accordance with the multivariate analysis, tumor size, tumor number, alpha-fetoprotein (AFP), and histological grade were independently associated with MVI. The established model exhibited satisfactory performance in predicting MVI. The C-indices were 0.719, 0.704, and 0.718 in the training, internal validation, and external validation cohorts, respectively. The calibration curves showed an excellent consistency between the predictions and actual observations. Finally, DCA demonstrated that the newly developed nomogram had favorable clinical utility.ConclusionsWe established and verified a novel preoperative MVI prediction model in HCC patients. This model can be a beneficial tool for clinicians in selecting an optimal treatment plan for HCC patients

    A New Liver Segmentation Based on Digital Liver Portal Vein Ramification Using Computer-Assisted Surgery System: Exploring Artificial Intelligence

    Get PDF
    A good understanding of liver anatomy is required for performing precise liver resection. However, the currently described methods of liver segmentation based on portal and hepatic veins are inconclusive. We proposed a system of liver segmentation based on previous reports and our data. Three-dimensional computed tomography software based on artificial intelligence was used to analyze the portal vein branching pattern in 759 patients. We analyzed four different types of liver segmentation and measured their respective segmental liver volumes. We classified four types of liver segmentation based on the right portal vein. Median segmental liver volumes were variable for the different types of segmentation. Our system of liver segmentation enables a better classification of individual patients into one of the different types, thus assisting in preoperative surgical planning. Segmental liver volume is useful for the preoperative evaluation of remnant liver volume

    The TTYH3/MK5 Positive Feedback Loop regulates Tumor Progression via GSK3-β/β-catenin signaling in HCC

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, and identification of novel targets is necessary for its diagnosis and treatment. This study aimed to investigate the biological function and clinical significance of tweety homolog 3 (TTYH3) in HCC. TTYH3 overexpression promoted cell proliferation, migration, and invasion and inhibited HCCM3 and Hep3B cell apoptosis. TTYH3 promoted tumor formation and metastasis in vivo. TTYH3 upregulated calcium influx and intracellular chloride concentration, thereby promoting cellular migration and regulating epithelial-mesenchymal transition-related protein expression. The interaction between TTYH3 and MK5 was identified through co-immunoprecipitation assays and protein docking. TTYH3 promoted the expression of MK5, which then activated the GSK3β/β-catenin signaling pathway. MK5 knockdown attenuated the activation of GSK3β/β-catenin signaling by TTYH3. TTYH3 expression was regulated in a positive feedback manner. In clinical HCC samples, TTYH3 was upregulated in the HCC tissues compared to nontumor tissues. Furthermore, high TTYH3 expression was significantly correlated with poor patient survival. The CpG islands were hypomethylated in the promoter region of TTYH3 in HCC tissues. In conclusion, we identified TTYH3 regulates tumor development and progression via MK5/GSK3-β/β-catenin signaling in HCC and promotes itself expression in a positive feedback loop

    miRNA-Based Signature Associated With Tumor Mutational Burden in Colon Adenocarcinoma

    Get PDF
    Colon adenocarcinoma (COAD) is one of the most common malignant tumors. Tumor mutation burden (TMB) has become an independent biomarker for predicting the response to immune checkpoint inhibitors (ICIs). miRNAs play an important role in cancer-related immune regulation. However, the relationship between miRNA expression and TMB in COAD remains unclear. Therefore, the transcriptome profiling data, clinical data, mutation annotation data, and miRNA expression profiles for cases of COAD were downloaded from the TCGA database. Subsequently, 323 COAD cases were randomly divided into training and test sets. The differential expression of miRNAs in the high and low TMB groups in the training set was obtained as a signature using the least absolute shrinkage and selection operator (LASSO) logistic regression and verified in the test set. Based on the LASSO method, principal component analysis (PCA), and ROC, we found that the signature was credible because it can discriminate between high and low TMB levels. In addition, the correlation between the 18-miRNA-based signature and immune checkpoints was performed, followed by qRT-PCR, to measure the relative expression of 18 miRNAs in COAD patients. The miRNA-based model had a strong positive correlation with TMB and a weak positive correlation with CTLA4 and CD274 (PD-L1). However, no correlation was observed between the model and SNCA (PD-1). Finally, enrichment analysis of the 18 miRNAs was performed to explore their biological functions. The results demonstrated that 18 miRNAs were involved in the process of immunity and cancer pathways. In conclusion, the 18-miRNA-based signature can effectively predict and discriminate between the different TMB levels of COAD and provide a guide for its treatment with ICIs

    Experimental Analysis of the Discharge Valve Movement of the Oil-Free Linear Compressor in the Refrigeration System

    Get PDF
    In a linear compressor, the valve motion significantly affects the thermodynamic efficiency and the compressor’s reliability, especially in oil-free conditions. To better understand the dynamic behavior of the discharge valve, a real-time test bench was built. The piston movements and dynamic pressure in the cylinder were also observed to obtain the synchronizing characteristics among the reed valve motion, cylinder pressure, and piston motion. Observing the motion of the discharge valve visually, the discharge valve flutters due to the change in the form of the cylinder pressure, the delayed opening of the valve is caused by the inertia of the valve itself, and additional displacement fluctuations are present. This paper presents the dynamic behavior of the discharge valve under different discharge pressure/operating frequency/piston stroke/clearance length conditions. The results show that the valve flutters increase, the mean displacement of the valve increases, and the duration of the discharge increases when the discharge pressure decreases. When the operating frequency increases, the duration of the discharge decreases, while the mean displacement of the valve increases. For a high stroke or a low clearance length case, the duration of the discharge increases, while the valve flutters increase due to the pressure fluctuations in the cylinder. Through analyzing the synchronizing characteristic among the valve movements, piston movements, and cylinder pressure, it is shown that the phenomenon of the delayed opening valve is much worse for a low stroke or a high operating frequency case. In addition, the delayed closing of the valve appears for a high operating frequency case (75 Hz)
    corecore