115 research outputs found

    Active and passive full-space collaborative control technology and engineering application in deep roadways

    Get PDF
    Due to the complex environment and ground stress at depth, and the various cross-sectional shapes and sizes, the damage types of deep roadways are diversified. The maximum ground stress, maximum compressive strength, and the corresponding support methods are compared by systematically analyzing the influence of high stress and dynamic pressure on the deep weak surrounding rock of roadways. And the stress intensity ratio is proposed to evaluate the support difficulty of surrounding rock of roadways. Then, the concept of active-passive full space collaborative control is proposed, and the core of the concept is to control the deformation of the roadway through active support methods such as destressing, grouting and bolt-cable to bring the self-supporting capacity of the surrounding rock of roadway into play, forming an active support body, and restoring its partial bearing capacity. Using passive support methods such as concrete-filled steel tube sets and U-shaped steel sets with high support resistance to form a passive support ring to assist or mobilize the bearing capacity of the rock surrounding roadways. Additionally, the mechanical mechanism of the collaborative support for concrete-filled steel tube sets and bolt-cable were analyzed, and the active-passive full space collaborative control technology and construction technique were developed and applied in the field. The study shows that the bolt-cable can reduce the bending moment and shear force of the concrete-filled steel tube sets, while reducing the axial force of the support and protecting the steel tube and the core concrete with poor tensile properties. The active-passive full space cooperative control technology has been successfully applied in deep roadway subjected to dynamic pressure and weak rock roadway in Jincheng Hudi Coal Mine and Yangquan Xinyuan Coal Mine, which has further developed the theory and technology of equal-strength support in deep roadway

    Superposition Based Nonlinearity Mitigation for ACO-OFDM Optical Wireless Communications

    Get PDF

    A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries

    Get PDF
    Despite their cost-effectiveness and intrinsic safety, aqueous zinc-ion batteries have faced challenges with poor reversibility originating from various active water-induced side reactions. After systematically scrutinizing the effects of water on the evolution of solvation structures, electrolyte properties, and electrochemical performances through experimental and theoretical approaches, a hydrated deep eutectic electrolyte with a water-deficient solvation structure ([Zn(H2O)2(eg)2(otf)2]) and reduced free water content in the bulk solution is proposed in this work. This electrolyte can dramatically suppress water-induced side reactions and provide high Zn2+ mass transfer kinetics, resulting in highly reversible Zn anodes (∌99.6% Coulombic efficiency over 1000 cycles and stable cycling over 4500 h) and high capacity Zn//NVO full cells (436 mA h g−1). This work will aid the understanding of electrolyte solvation structure–electrolyte property–electrochemical performance relationships of aqueous electrolytes in aqueous zinc-ion batteries

    Strong Electronic Interaction of Amorphous Fe2O3 Nanosheets with Single‐Atom Pt toward Enhanced Carbon Monoxide Oxidation

    Full text link
    Platinum‐based catalysts are critical to several chemical processes, but their efficiency is not satisfying enough in some cases, because only the surface active‐site atoms participate in the reaction. Henceforth, catalysts with single‐atom dispersions are highly desirable to maximize their mass efficiency, but fabricating these structures using a controllable method is still challenging. Most previous studies have focused on crystalline materials. However, amorphous materials may have enhanced performance due to their distorted and isotropic nature with numerous defects. Here reported is the facile synthesis of an atomically dispersed catalyst that consists of single Pt atoms and amorphous Fe2O3 nanosheets. Rational control can regulate the morphology from single atom clusters to sub‐nanoparticles. Density functional theory calculations show the synergistic effect resulted from the strong binding and stabilization of single Pt atoms with the strong metal‐support interaction between the in situ locally anchored Pt atoms and Fe2O3 lead to a weak CO adsorption. Moreover, the distorted amorphous Fe2O3 with O vacancies is beneficial for the activation of O2, which further facilitates CO oxidation on nearby Pt sites or interface sites between Pt and Fe2O3, resulting in the extremely high performance for CO oxidation of the atomic catalyst.An atomically Pt dispersed catalyst on amorphous Fe2O3 nanosheets is developed. The size effect of Pt and phase effect of support are explored. The synergistic effect results from the strong metal‐support interactions between the single Pt atoms and the amorphous Fe2O3 structure supports lead to an enhanced CO oxidation performance.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151833/1/adfm201904278-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151833/2/adfm201904278.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151833/3/adfm201904278_am.pd

    Boosting Oxygen and Peroxide Reduction Reactions on PdCu Intermetallic Cubes

    Full text link
    Palladium‐based nanocatalysts have the potential to replace platinum‐based catalysts for fuel‐cell reactions in alkaline electrolytes, especially PdCu intermetallic nanoparticles with high electrochemical activity and stability. However, unlike the synthetic methods for obtaining the nanoparticles, the effect of PdCu shape on the performance is relatively less well studied. Here, we demonstrate the facet dependence of PdCu intermetallics on the oxygen reduction reaction (ORR) and peroxide reduction, and reveal that the {100} dominant PdCu cubes have a much higher ORR mass activity and specific activity than spheres at 0.9 V vs. RHE, which is four and five times that of commercial Pd/C and Pt/C catalysts, respectively, and show only a 31.7 % decay after 30 000 cycles in the stability test. Moreover, cubic PdCu nanoparticles show higher peroxide electroreduction activity than Pd cubes and PdCu spheres. Density functional theory (DFT) calculation reveals that the huge difference originates from the reduction in oxygen adsorption energy and energy barrier of peroxide decomposition on the ordered {100} PdCu surface. Given the relationship between the shape and electrochemical performance, this study will contribute to further research on electrocatalytic improvements of catalysts in alkaline environments.Shape the future: PdCu intermetallic cubes and spheres are synthesized to investigate the facet dependence on the oxygen reduction reaction and peroxide reduction. The cubes show large improvements in mass activity towards both reactions, compared with the spheres. DFT calculation uncovers that the dominant {100} faces of the cubes offer more appropriate oxygen adsorption and are thermodynamically favorable for peroxide reduction compared to the surface of spheres.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/1/celc202000381.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/2/celc202000381_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155903/3/celc202000381-sup-0001-misc_information.pd

    A Non‐Pt Electronically Coupled Semiconductor Heterojunction for Enhanced Oxygen Reduction Electrocatalytic Property

    Full text link
    Hybrid faceted‐Ag3PO4/cube‐Cu2O composite materials have been fabricated and employed as oxygen reduction electrocatalysts for proton exchange membrane fuel cells (PEMFCs). The charge separation effect via the formation of PN junction has been demonstrated to boost the electrocatalysis toward oxygen reduction reaction. The as‐prepared rhombic dodecahedron‐Ag3PO4/cube‐Cu2O/C hybrid catalyst shows a mass‐specific activity of 109.80 mA/mgAg, which is about 6.4 times that of pure rhombic dodecahedron‐Ag3PO4/C catalyst (17.20 mA/mgAg). The density functional theory (DFT) calculation based on the density of states (DOS) further proved the optimal tunable effect, which is in pace with demonstration of electron transfer direction revealed by X‐ray photoelectron spectroscopy (XPS) analysis. Our work establishes a theoretical and practical basis for the rational design of newly non‐Pt hybrid catalysts, moreover, advances the future efficient application of PEMFCs.A cost effective electronically coupled semiconductor heterojunction between facet‐Ag3PO4 and Cu2O cube is reported. Its high electrocatalytic activity towards oxygen reduction reaction (ORR) indicates that electron distribution can be controlled through the interfacial engineering between Ag3PO4 and Cu2O. This paves way to rationally design new non‐Pt hybrid catalysts, and moreover advances the future efficient applications of proton exchange membrane fuel cells (PEMFCs).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149290/1/slct201900615.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149290/2/slct201900615-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149290/3/slct201900615_am.pd

    In vitro/in vivo degradation analysis of trastuzumab by combining specific capture on HER2 mimotope peptide modified material and LC-QTOF-MS.

    Full text link
    peer reviewedDegradation analysis of therapeutic mAb is of high interest for critical quality attributes assessment and biotransformation studies. However, some obstacles, including low in vivo concentrations of mAb and complex biological matrices containing IgGs, could seriously interfere with mAb bioanalysis. In this study, a bioanalytical platform was developed for studying in vitro/in vivo modifications of trastuzumab, in which specific capture on mimotope peptide modified material was combined with trypsin digestion and LC-QTOF-MS analysis. It is worth noting that this material exhibits high specificity, suitable dynamic binding capacity, very little non-specific protein adsorption, and thus provides good enrichment and quantification performances for trastuzumab from patient serums. In particular, this bioanalytical platform was successfully applied to the dynamic monitoring of modifications of trastuzumab, such as deamidation, isomerization, oxidation and cyclization. Except for the faster deamidation of LC-Asn-30 and HC-Asn-387/392/393 under serum incubation, similar degradation trends for other sites were observed in phosphate buffer and spiked serum. Differences of peptide modification degrees of trastuzumab in patient serums were also observed. The novel platform exhibited superior specificity than Protein A/G/L based analytical methods, lower cost and higher stability than antigen or anti-idiotypic antibody based analytical methods, ensuring the evaluation of modification sites.Guangzhou Science and Technology Program key project

    Inhibition of Vanadium Cathodes Dissolution in Aqueous Zn-Ion Batteries

    Get PDF
    Aqueous zinc-ion batteries (AZIBs) have experienced a rapid surge in popularity, as evident from the extensive research with over 30 000 articles published in the past 5 years. Previous studies on AZIBs have showcased impressive long-cycle stability at high current densities, achieving thousands or tens of thousands of cycles. However, the practical stability of AZIBs at low current densities (<1C) is restricted to merely 50–100 cycles due to intensified cathode dissolution. This genuine limitation poses a considerable challenge to their transition from the laboratory to the industry. In this study, leveraging density functional theory (DFT) calculations, an artificial interphase that achieves both hydrophobicity and restriction of the outward penetration of dissolved vanadium cations, thereby shifting the reaction equilibrium and suppressing the vanadium dissolution following Le Chatelier's principle, is described. The approach has resulted in one of the best cycling stabilities to date, with no noticeable capacity fading after more than 200 cycles (≈720 h) at 200 mA g−1 (0.47C). These findings represent a significant advance in the design of ultrastable cathodes for aqueous batteries and accelerate the industrialization of aqueous zinc-ion batteries

    Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators

    Get PDF
    Routine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic-level Zn deposition. Here, based on underpotential deposition (UPD), we propose an "escort effect" of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900 h at 1 mA cm-2 (more than 4 times longer than the blank one). Moreover, the universality of "escort effect" is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic-level principles by controlling interfacial electrochemistry for various metal batteries

    When It's Heavier: Interfacial and Solvation Chemistry of Isotopes in Aqueous Electrolytes for Zn-ion Batteries

    Get PDF
    The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2O-based electrolyte demonstrated more stable cycling performance which displayed ∌100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8–2.0 V and 3,000 cycles with a normal voltage window of 0.8–1.9 V at a current density of 2 A g−1
    • 

    corecore