5 research outputs found

    X ray emission spectroscopy of bulk liquid water in no man s land

    Get PDF
    The structure of bulk liquid water was recently probed by x ray scattering below the temperature limit of homogeneous nucleation TH of amp; 8764;232 K [J. A. Sellberg et al., Nature 510, 381 384 2014 ]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K edge x ray emission spectroscopy XES . Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387 400 2008 ] at higher temperatures, we expected the ratio of the 1b1 amp; 8242; and 1b1 amp; 8242; amp; 8242; peaks associated with the lone pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen H bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more importan

    A proposal for the structure of high- and low-density fluctuations in liquid water

    No full text
    Based on recent experimental data that can be interpreted as indicating the presence of specific structures in liquid water, we build and optimize two structural models which we compare with the available experimental data. To represent the proposed high-density liquid structures, we use a model consisting of chains of water molecules, and for low-density liquid, we investigate fused dodecahedra as templates for tetrahedral fluctuations. The computed infrared spectra of the models are in very good agreement with the extracted experimental spectra for the two components, while the extracted structures from molecular dynamics (MD) simulations give spectra that are intermediate between the experimentally derived spectra. Computed x-ray absorption and emission spectra as well as the O-O radial distribution functions of the proposed structures are not contradicted by experiment. The stability of the proposed dodecahedral template structures is investigated in MD simulations by seeding the starting structure, and remnants found to persist on an ∌30 ps time scale. We discuss the possible significance of such seeds in simulations and whether they can be viable candidates as templates for structural fluctuations below the compressibility minimum of liquid water
    corecore