101,151 research outputs found

    Spin-one bosons in low dimensional Mott insulating states

    Full text link
    We analyze the strong coupling limit of spin-one bosons in low dimensional Mott insulating states. In 1D lattices, for an odd number of bosons per site (N0N_0), the ground state is a dimerized valence bond crystal state with a two-fold degeneracy; the low lying elementary spin excitations carry spin one. For an even number of bosons per site, the ground state is a nondegenerate spin singlet Mott state. We also argue that in a square lattice in a quantum disordered limit the ground states should be dimerized valence bond crystals for an odd integer N0N_0. Finally, we briefly report results for non-integer numbers of bosons per site in one-dimensional lattices.Comment: 5 pages; discussions on non-integer case have been shortene

    Energy and centrality dependence of particle multiplicity in heavy ion collisions from sNN\sqrt{s_{_{NN}}} = 20 to 2760 GeV

    Full text link
    The centrality dependence of midrapidity charged-particle multiplicities at a nucleon-nucleon center-of-mass energy of 2.76 TeV from CMS are compared to PHOBOS data at 200 and 19.6 GeV. The results are first fitted with a two-component model which parameterizes the separate contributions of nucleon participants and nucleon-nucleon collisions. A more direct comparison involves ratios of multiplicity densities per participant pair between the different collision energies. The results support and extend earlier indications that the influences of centrality and collision energy on midrapidity charged-particle multiplicities are to a large degree independent.Comment: 5 pages, 2 figures, 1 table, Replaced with published version, v3 has fixed typ

    Instability analysis procedure for 3-level multi-bearing rotor-foundation systems

    Get PDF
    A procedure for the instability analysis of a three-level multispan rotor systems is described. This procedure is based on a distributed mass elastic representation of the rotor system in several eight-coefficient bearings. Each bearing is supported from an elastic foundation on damped, elastic pedestals. The foundation is represented as a general distributed mass elastic structure on discrete supports, which may have different stiffness and damping properties in the horizontal and vertical directions. This system model is suited to studies of instability threshold conditions for multirotor turbomachines on either massive or flexible foundations. The instability conditions is found by obtaining the eigenvalues of the system determinant, which is obtained by the transfer matrix method from the three-level system model. The stability determinant is solved for the lowest rotational speed at which the system damping becomes zero in the complex eigenvalue, and for the whirl frequency corresponding to the natural frequency of the unstable mode. An efficient algorithm for achieving this is described. Application of this procedure to a rigid rotor in two damped-elastic bearings and flexible supports is described. A second example discusses a flexible rotor with four damped-elastic bearings. The third case compares the stability of a six-bearing 300 Mw turbine generator unit, using two different bearing types. These applications validate the computer program and various aspects of the analysis

    Magnetization plateaus for spin-one bosons in optical lattices: Stern-Gerlach experiments with strongly correlated atoms

    Full text link
    We consider insulating states of spin-one bosons in optical lattices in the presence of a weak magnetic field. For the states with more than one atom per lattice site we find a series of quantum phase transitions between states with fixed magnetization and a canted nematic phase. In the presence of a global confining potential, this unusual phase diagram leads to several novel phenomena, including formation of magnetization plateaus. We discuss how these effects can be observed using spatially resolved density measurements.Comment: 4 pages 5 figure

    Localization of Macroscopic Object Induced by the Factorization of Internal Adiabatic Motion

    Full text link
    To account for the phenomenon of quantum decoherence of a macroscopic object, such as the localization and disappearance of interference, we invoke the adiabatic quantum entanglement between its collective states(such as that of the center-of-mass (C.M)) and its inner states based on our recent investigation. Under the adiabatic limit that motion of C.M dose not excite the transition of inner states, it is shown that the wave function of the macroscopic object can be written as an entangled state with correlation between adiabatic inner states and quasi-classical motion configurations of the C.M. Since the adiabatic inner states are factorized with respect to each parts composing the macroscopic object, this adiabatic separation can induce the quantum decoherence. This observation thus provides us with a possible solution to the Schroedinger cat paradoxComment: Revtex4,23 pages,1figur

    Helioseismic Ring Analysis of CME Source Regions

    Full text link
    We apply the ring diagram technique to source regions of halo coronal mass ejections (CMEs) to study changes in acoustic mode parameters before, during, and after the onset of CMEs. We find that CME regions associated with a low value of magnetic flux have line widths smaller than the quiet regions implying a longer life-time for the oscillation modes. We suggest that this criterion may be used to forecast the active regions which may trigger CMEs.Comment: Accepted for publication in J. Astrophys. Astr. Also available at http://www2.nso.edu/staff/sushant/paper.htm
    • …
    corecore