1,052 research outputs found

    Contrast of LiFeAs with isostructural, isoelectronic, and non-superconducting MgFeGe

    Full text link
    Stoichiometric LiFeAs at ambient pressure is an 18 K superconductor while isoelectronic MgFeGe is not, despite their extremely similar electronic structures. To investigate possible sources of this distinctively different superconducting behavior, we quantify the differences using first principles density functional theory, establishing first that the Fe total 3d occupations are identical in the two compounds. Individual 3d orbital occupations also differ very little (0.01\sim 0.01). The differences in Fermi surfaces (FSs) do not seem significant; however a redistribution of bands just above the Fermi level does represent a possibly significant distinction. Because the bands and FSs of LiFeAs are less in agreement with experiment than for other iron-pnictides, we study the effects of additional exchange-correlations effects beyond GGA (the generalized gradient approximation) by applying the modified Becke-Johnson potential (mBJ) exchange potential, which gives much improved bandgaps in insulators compared to GGA and might be useful for semimetals such as the Fe-based superconductors. Overall, we conclude that the mBJ corrections do not improve the description of LiFeAs as compared to experiment

    Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection

    Get PDF
    Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as μM

    A Comparative Study on the Nonlinear Interaction Between a Focusing Wave and Cylinder Using State-of-the-art Solvers: Part A

    Get PDF
    This paper presents ISOPE’s 2020 comparative study on the interaction between focused waves and a fixed cylinder. The paper discusses the qualitative and quantitative comparisons between 20 different numerical solvers from various universities across the world for a fixed cylinder. The moving cylinder cases are reported in a companion paper as part B (Agarwal, Saincher, et al., 2021). The numerical solvers presented in this paper are the recent state of the art in the field, mostly developed in-house by various academic institutes. The majority of the participants used hybrid modeling (i.e., a combination of potential flow and Navier–Stokes solvers). The qualitative comparisons based on the wave probe and pressure probe time histories and spectral components between laminar, turbulent, and potential flow solvers are presented in this paper. Furthermore, the quantitative error analyses based on the overall relative error in peak and phase shifts in the wave probe and pressure probe of all the 20 different solvers are reported. The quantitative errors with respect to different spectral component energy levels (i.e., in primary, sub-, and superharmonic regions) capturing capability are reported. Thus, the paper discusses the maximum, minimum, and median relative errors present in recent solvers as regards application to industrial problems rather than attempting to find the best solver. Furthermore, recommendations are drawn based on the analysis

    A New Look at the Scalar Meson f0(500)f_0(500) via D+π+π+νD^+\to \pi^+\pi^-\ell^+\nu_\ell Decays

    Full text link
    Using 2.93 fb12.93~\mathrm{fb}^{-1} of e+ee^+e^- collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+π+π+νD^+\to \pi^+\pi^- \ell^+\nu_\ell (=e\ell=e and μ\mu). The D+f0(500)μ+νμD^+\to f_0(500)\mu^+\nu_\mu decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+f0(500)μ+νμD^+\to f_0(500) \mu^+\nu_\mu and D+f0(500)e+νeD^+\to f_0(500) e^+\nu_e in different +ν\ell^+\nu_\ell four-momentum transfer intervals, the product of the relevant hadronic form factor f+f0(0)f^{f_0}_{+}(0) and the magnitude of the cdc\to d Cabibbo-Kobayashi-Maskawa matrix element Vcd|V_{cd}| is determined to be f+f0(0)Vcd=0.0787±0.0060stat±0.0033systf_{+}^{f_0} (0)|V_{cd}|=0.0787\pm0.0060_{\rm stat}\pm0.0033_{\rm syst} for the first time. With the input of Vcd|V_{cd}| from the global fit in the standard model, we determine f+f0(0)=0.350±0.027stat±0.015systf_{+}^{f_0} (0)=0.350\pm0.027_{\rm stat}\pm0.015_{\rm syst}. The absolute branching fractions of D+f0(500)(π+π)μ+νμD^+\to f_0(500)_{(\pi^+\pi^-)}\mu^+\nu_\mu and D+ρ(π+π)0μ+νμD^+\to \rho^0_{(\pi^+\pi^-)} \mu^+\nu_\mu are determined as (0.72±0.13stat±0.10syst)×103(0.72\pm0.13_{\rm stat}\pm0.10_{\rm syst})\times10^{-3} and (1.64±0.13stat±0.11syst)×103(1.64\pm0.13_{\rm stat}\pm0.11_{\rm syst})\times 10^{-3}. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+ρ0μ+νμ/BD+ρ0e+νe=0.88±0.10{\mathcal B}_{D^+\to \rho^0 \mu^+\nu_\mu}/{\mathcal B}_{D^+\to \rho^0 e^+\nu_e}=0.88\pm0.10 and BD+f0(500)μ+νμ/BD+f0(500)e+νe=1.14±0.28{\mathcal B}_{D^+\to f_0(500) \mu^+\nu_\mu}/{\mathcal B}_{D^+\to f_0(500) e^+\nu_e}=1.14\pm0.28, which are compatible with the standard model expectation.Comment: Supplemental Materials added in this versio

    Study of the doubly Cabibbo-suppressed decays Ds+K+K+πD^+_s\to K^+K^+\pi^- and Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0

    Full text link
    Based on 7.33 fb1^{-1} of e+ee^+e^- collision data collected at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, the experimental studies of the doubly Cabibbo-suppressed decays Ds+K+K+πD^+_s\to K^+K^+\pi^- and Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0 are reported. We determine the absolute branching fraction of Ds+K+K+πD^+_s\to K^+K^+\pi^- to be (1.230.25+0.28(stat)±0.06(syst){1.23^{+0.28}_{-0.25}}({\rm stat})\pm0.06({\rm syst})) ×104\times 10^{-4}. No significant signal of Ds+K+K+ππ0D^+_s\to K^+K^+\pi^-\pi^0 is observed and the upper limit on its decay branching fraction at 90\% confidence level is set to be 1.7×1041.7\times10^{-4}.Comment: 10 pages, 4 figures, 4 table

    Search for an invisible muon philic scalar X0X_{0} or vector X1X_{1} via J/ψμ+μ+invisibleJ/\psi\to\mu^+\mu^-+\rm{invisible} decay at BESIII

    Full text link
    A light scalar X0X_{0} or vector X1X_{1} particles have been introduced as a possible explanation for the (g2)μ(g-2)_{\mu} anomaly and dark matter phenomena. Using (8.998±0.039)×109(8.998\pm 0.039)\times10^9 \jpsi events collected by the BESIII detector, we search for a light muon philic scalar X0X_{0} or vector X1X_{1} in the processes J/ψμ+μX0,1J/\psi\to\mu^+\mu^- X_{0,1} with X0,1X_{0,1} invisible decays. No obvious signal is found, and the upper limits on the coupling g0,1g_{0,1}' between the muon and the X0,1X_{0,1} particles are set to be between 1.1×1031.1\times10^{-3} and 1.0×1021.0\times10^{-2} for the X0,1X_{0,1} mass in the range of 1<M(X0,1)<10001<M(X_{0,1})<1000~MeV/c2/c^2 at 90%\% confidence level.Comment: 9 pages 7 figure
    corecore