529 research outputs found

    Development of low cost motion-sensing system

    Full text link
    Micro-electro-mechanical system (MEMS) technology offers sensors with lower cost, smaller size, lower power consumption. In this paper, a kind of low cost motion-sensing system based MEMS sensors is developed. The objective of the design is low cost, small volume and light weight in order to be used in many fields. The constituting principle of the system is described. Algorithms and hardware of the system are researched. And the definition of coordinate, calculation of pose angle, transform of acceleration and calculation of the velocities and displacement of the moving object are presented with corresponding mathematics model and algorithms. The experiments are carried out in principle and results are given. It is proved that the low cost motion-sensing system is effective and correct.<br /

    Enhancing Detail Preservation for Customized Text-to-Image Generation: A Regularization-Free Approach

    Full text link
    Recent text-to-image generation models have demonstrated impressive capability of generating text-aligned images with high fidelity. However, generating images of novel concept provided by the user input image is still a challenging task. To address this problem, researchers have been exploring various methods for customizing pre-trained text-to-image generation models. Currently, most existing methods for customizing pre-trained text-to-image generation models involve the use of regularization techniques to prevent over-fitting. While regularization will ease the challenge of customization and leads to successful content creation with respect to text guidance, it may restrict the model capability, resulting in the loss of detailed information and inferior performance. In this work, we propose a novel framework for customized text-to-image generation without the use of regularization. Specifically, our proposed framework consists of an encoder network and a novel sampling method which can tackle the over-fitting problem without the use of regularization. With the proposed framework, we are able to customize a large-scale text-to-image generation model within half a minute on single GPU, with only one image provided by the user. We demonstrate in experiments that our proposed framework outperforms existing methods, and preserves more fine-grained details

    GeoDeformer: Geometric Deformable Transformer for Action Recognition

    Full text link
    Vision transformers have recently emerged as an effective alternative to convolutional networks for action recognition. However, vision transformers still struggle with geometric variations prevalent in video data. This paper proposes a novel approach, GeoDeformer, designed to capture the variations inherent in action video by integrating geometric comprehension directly into the ViT architecture. Specifically, at the core of GeoDeformer is the Geometric Deformation Predictor, a module designed to identify and quantify potential spatial and temporal geometric deformations within the given video. Spatial deformations adjust the geometry within individual frames, while temporal deformations capture the cross-frame geometric dynamics, reflecting motion and temporal progression. To demonstrate the effectiveness of our approach, we incorporate it into the established MViTv2 framework, replacing the standard self-attention blocks with GeoDeformer blocks. Our experiments at UCF101, HMDB51, and Mini-K200 achieve significant increases in both Top-1 and Top-5 accuracy, establishing new state-of-the-art results with only a marginal increase in computational cost. Additionally, visualizations affirm that GeoDeformer effectively manifests explicit geometric deformations and minimizes geometric variations. Codes and checkpoints will be released.Comment: Including geometric transformations into Vi

    Metabolic profile, bioavailability and toxicokinetics of zearalenone-14-glucoside in rats after oral and intravenous administration by liquid chromatography high-resolution mass spectrometry and tandem mass spectrometry

    Get PDF
    Zearalenone-14-glucoside (ZEN-14G), a key modified mycotoxin, has attracted a great deal of attention due to the possible conversion to its free form of zearalenone (ZEN) exerting toxicity. In this study, the toxicokinetics of ZEN-14G were investigated in rats after oral and intravenous administration. The plasma concentrations of ZEN-14G and its major five metabolites were quantified using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The data were analyzed via non-compartmental analysis using software WinNonlin 6.3. The results indicated that ZEN-14G was rapidly hydrolyzed into ZEN in vivo. In addition, the major parameters of ZEN-14G following intravenous administration were: area under the plasma concentration-time curve (AUC), 1.80 h.ng/mL; the apparent volume of distribution (V-Z), 7.25 L/kg; and total body clearance (CL), 5.02 mL/h/kg, respectively. After oral administration, the typical parameters were: AUC, 0.16 h.ng/mL; V-Z, 6.24 mL/kg; and CL, 4.50 mL/h/kg, respectively. The absolute oral bioavailability of ZEN-14G in rats was about 9%, since low levels of ZEN-14G were detected in plasma, which might be attributed to its extensive metabolism. Therefore, liquid chromatography high-resolution mass spectrometry (LC-HRMS) was adopted to clarify the metabolic profile of ZEN-14G in rats' plasma. As a result, eight metabolites were identified in which ZEN-14-glucuronic acid (ZEN-14GlcA) had a large yield from the first time-point and continued accumulating after oral administration, indicating that ZEN-14-glucuronic acid could serve a potential biomarker of ZEN-14G. The obtained outcomes would prompt the accurate safety evaluation of ZEN-14G
    • …
    corecore