103,367 research outputs found
Intrinsic Cavity QED and Emergent Quasi-Normal Modes for Single Photon
We propose a special cavity design that is constructed by terminating a
one-dimensional waveguide with a perfect mirror at one end and doping a
two-level atom at the other. We show that this atom plays the intrinsic role of
a semi-transparent mirror for single photon transports such that quasi-normal
modes (QNM's) emerge spontaneously in the cavity system. This atomic mirror has
its reflection coefficient tunable through its level spacing and its coupling
to the cavity field, for which the cavity system can be regarded as a two-end
resonator with a continuously tunable leakage. The overall investigation
predicts the existence of quasi-bound states in the waveguide continuum. Solid
state implementations based on a dc-SQUID circuit and a defected line resonator
embedded in a photonic crystal are illustrated to show the experimental
accessibility of the generic model.Comment: 4 pages,5 figures, Comments welcom
Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks
Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs
Optimal squeezing, pure states, and amplification of squeezing in resonance fluorescence
It is shown that 100% squeezed output can be produced in the resonance
fluorescence from a coherently driven two-level atom interacting with a
squeezed vacuum. This is only possible for squeezed input, and is
associated with a pure atomic state, i.e., a completely polarized state. The
quadrature for which optimal squeezing occurs depends on the squeezing phase
the Rabi frequency and the atomic detuning . Pure
states are described for arbitrary not just or as in
previous work. For small values of there may be a greater degree of
squeezing in the output field than the input - i.e., we have squeezing
amplification.Comment: 6 pages & 7 figures, Submitted to Phys. Rev.
Ground-State Fidelity and Kosterlitz-Thouless Phase Transition for Spin 1/2 Heisenberg Chain with Next-to-the-Nearest-Neighbor Interaction
The Kosterlitz-Thouless transition for the spin 1/2 Heisenberg chain with the
next-to-the-nearest-neighbor interaction is investigated in the context of an
infinite matrix product state algorithm, which is a generalization of the
infinite time-evolving block decimation algorithm [G. Vidal, Phys. Rev. Lett.
\textbf{98}, 070201 (2007)] to accommodate both the
next-to-the-nearest-neighbor interaction and spontaneous dimerization. It is
found that, in the critical regime, the algorithm automatically leads to
infinite degenerate ground-state wave functions, due to the finiteness of the
truncation dimension. This results in \textit{pseudo} symmetry spontaneous
breakdown, as reflected in a bifurcation in the ground-state fidelity per
lattice site. In addition, this allows to introduce a pseudo-order parameter to
characterize the Kosterlitz-Thouless transition.Comment: 4 pages, 4 figure
Cavity induced modifications to the resonance fluorescence and probe absorption of a laser-dressed V atom
A cavity-modified master equation is derived for a coherently driven, V-type
three-level atom coupled to a single-mode cavity in the bad cavity limit. We
show that population inversion in both the bare and dressed-state bases may be
achieved, originating from the enhancement of the atom-cavity interaction when
the cavity is resonant with an atomic dressed-state transition. The atomic
populations in the dressed state representation are analysed in terms of the
cavity-modified transition rates. The atomic fluorescence spectrum and probe
absorption spectrum also investigated, and it is found that the spectral
profiles may be controlled by adjusting the cavity frequency. Peak suppression
and line narrowing occur under appropriate conditions.Comment: 12 pages, 10 postscript figures, to be appeared in Phys. Rev.
- …