4 research outputs found

    Graded reflection equation algebras and integrable Kondo impurities in the one-dimensional t-J model

    Full text link
    Integrable Kondo impurities in two cases of the one-dimensional t−Jt-J model are studied by means of the boundary Z2{\bf Z}_2-graded quantum inverse scattering method. The boundary KK matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.Comment: 14 pages, RevTe

    Integrable Kondo impurities in one-dimensional extended Hubbard models

    Get PDF
    Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by means of the boundary graded quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras acting in a (2s alpha + 1)-dimensional impurity Hilbert space. Furthermore, these models are solved using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained

    The open XXZ and associated models at q root of unity

    Full text link
    The generalized open XXZ model at qq root of unity is considered. We review how associated models, such as the qq harmonic oscillator, and the lattice sine-Gordon and Liouville models are obtained. Explicit expressions of the local Hamiltonian of the spin 12{1 \over 2} XXZ spin chain coupled to dynamical degrees of freedom at the one end of the chain are provided. Furthermore, the boundary non-local charges are given for the lattice sine Gordon model and the qq harmonic oscillator with open boundaries. We then identify the spectrum and the corresponding Bethe states, of the XXZ and the q harmonic oscillator in the cyclic representation with special non diagonal boundary conditions. Moreover, the spectrum and Bethe states of the lattice versions of the sine-Gordon and Liouville models with open diagonal boundaries is examined. The role of the conserved quantities (boundary non-local charges) in the derivation of the spectrum is also discussed.Comment: 31 pages, LATEX, minor typos correcte

    Analytical Bethe Ansatz for closed and open gl(n)-spin chains in any representation

    Get PDF
    We present an "algebraic treatment" of the analytical Bethe Ansatz. For this purpose, we introduce abstract monodromy and transfer matrices which provide an algebraic framework for the analytical Bethe Ansatz. It allows us to deal with a generic gl(n)-spin chain possessing on each site an arbitrary gl(n)-representation. For open spin chains, we use the classification of the reflection matrices to treat all the diagonal boundary cases. As a result, we obtain the Bethe equations in their full generality for closed and open spin chains. The classifications of finite dimensional irreducible representations for the Yangian (closed spin chains) and for the reflection algebras (open spin chains) are directly linked to the calculation of the transfer matrix eigenvalues. As examples, we recover the usual closed and open spin chains, we treat the alternating spin chains and the closed spin chain with impurity
    corecore