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Integrable Kondo impurities in one-dimensional extended Hubbard models
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Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by
means of the boundary graded quantum inverse scattering method. The boundaryK matrices depending on the
local moments of the impurities are presented as a nontrivial realization of the graded reflection equation
algebras acting in a (2sa11)-dimensional impurity Hilbert space. Furthermore, these models are solved using
the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
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I. INTRODUCTION

The study of integrable models of correlated electro
with open boundary conditions has been the subject of c
siderable attention.1–9 Recently it has become apparent th
for models of open chains it is possible to obtain integra
impurity boundary conditions as operators that need no
expressed in terms of the~super!symmetry of the bulk
model. A very important application of this procedure is
the context of Kondo, i.e., spin, impurities in models of co
related electrons. For the case of the supersymmetrict-J
model boundary spin-1

2 impurities were introduced in Ref
10 and the resulting model was solved by means of the
ordinate Bethe ansatz method.

A reformulation of this model in the context of the qua
tum inverse scattering method~QISM! was given in Ref. 11,
demonstrating that the model could be obtained via a fam
of commuting transfer matrices and thus establishing inte
bility. Central to this approach is the representations of
reflection equation algebras originally introduced
Sklyanin.12 Such a solution guarantees that boundary te
may be applied to any model whose bulk integrability
associated with a solution of the Yang-Baxter equation.
interesting observation made in Ref. 11 was that the ne
sary solution of the reflection equation was not regular in
sense that it is not obtained by ‘‘dressing’’; i.e., it cannot
factorized into a product of local monodromy matrices an
c-number matrix.

By utilizing the underlying algebraic structure it was su
sequently shown in Ref. 13 that more general classes o
tegrablet-J models with Kondo impurities exist. These we
derived from both gl(2u1) and gl(3) invariant solutions o
the Yang-Baxter equation, and the solution of the reflect
equation was extended to accomodate arbitrary spins impu-
rities situated on the boundaries. Again, the new solution
the reflection equation are not regular. Moreover, it was a
demonstrated in Ref. 13 that the algebraic Bethe ansa
applicable for these models and explicit solutions w
given.

Recently, the work of Frahm and Slavnov14 has provided
a representation-theoretic explanation for the existence
these nonregular solutions of the reflection equation. In
sence, such solutions are obtained by suitable projection
a subspace of the impurity Hilbert space for a regular so
tion. A consequence of this projection method is that
PRB 620163-1829/2000/62~8!/4906~16!/$15.00
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remaining~super!symmetry in the new boundary operator o
the impurity site corresponds to a subalgebra of the~super!
symmetry of the original regular solution. As examples, t
was illustrated in Ref. 14 for the case of gl(m) impurites
coupled to an open gl(n) invaraint chain form,n and a
reproduction of the integrablet-J model with Kondo impu-
rities given in Ref. 13.

It is immediately evident in view of these results th
integrable spin impurities, being characterized by the s
plest Lie algebra su(2), can bereadily obtained from regula
solutions coming from the larger~super!symmetry associated
with the model in the bulk. In particular, it is possible
obtain integrable boundary Kondo impurity models asso
ated with the Lie algebra gl(4) and superalgebras gl(3u1)
and gl(2u2), which we investigate here. In each case,
bulk Hamiltonian can be expressed in the form of an e
tended Hubbard model and thus is worthy of investigation
terms of the physical properties that are exhibited. The b
Hamiltonian associated with the gl(2u2) solution is well
known from previous work of Essleret al.15 For the cases of
gl(4) and gl(3u1), although the quantumR matrices are well
known in the literature,16–18 a realization of the associate
Hamiltonians in terms of Fermi operators appears lacki
Here we present for these two cases the bulk Hamiltonia
which are new models for integrable correlated electron s
tems.

In the next section we introduce the three forms of e
tended Hubbard models with integrable boundary Kondo
purities. Following this we undertake an algebraic Bethe
satz approach to solve each case. In the last section
conclude with some final remarks.

II. INTEGRABLE NON- c-NUMBER BOUNDARY K
MATRICES AND KONDO IMPURITIES

IN ONE-DIMENSIONAL EXTENDED HUBBARD MODELS

Let cj ,s andcj ,s
† denote fermionic creation and annihila

tion operators for spins at sitej, which satisfy the anticom-
mutation relations $ci ,s

† ,cj ,t%5d i j dst , where i , j
51,2, . . . ,L and s,t5↑,↓. We consider the following
Hamiltonian, which describes two impurities coupled to t
supersymmetric extended Hubbard open chain of Es
et al.,15
4906 ©2000 The American Physical Society
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H52 (
j 51,s

L21

~cj ,s
† cj 11,s1H.c.!~12nj ,2s2nj 11,2s!

2 (
j 51

L21

~cj ,↑
† cj ,↓

† cj 11,↓cj 11,↑1H.c.!

12(
j 51

L21

~Sj•Sj 112 1
4 njnj 11!1JaS1•Sa1Van1

1Uan1↑n1↓1JbSL•Sb1VbnL1UbnL↑nL↓ , ~1!

where Ja ,Va , and Ua (a5a,b) are the Kondo coupling
constants, the impurity scalar potentials, and the bound
Hubbard-like interaction constants, respectively;S is the
vector spin operator for the conduction electrons;Sa (a
5a,b) are the local moments with spin12 located at the left
and right ends of the system, respectively;nj s is the number
density operatornj s5cj s

† cj s , nj5nj↑1nj↓ .
The supersymmetry algebra underlying the bulk Ham

tonian of this model is gl(2u2). It is quite interesting to note
that although the introduction of the impurities spoils t
supersymmetry, there still remains u(2)^ u(2) symmetry in
the Hamiltonian~1! whose representation contains the sp
and h-pairing realizations. As a result, one may add so
terms likeU( j 51

L nj↑nj↓ , m( j 51
L nj , andh( j 51

L (nj↑2nj↓) to
the Hamiltonian~1!,without spoiling the integrability. Below
we will establish the quantum integrability of the Ham
tonian ~1! for a special choice of the model parametersJa ,
Va , andUa :

Ja52
2

ca~ca12sa11!
, Va52

ca
212casa2sa

ca~ca12sa11!
,

Ua52
2sa2ca

22ca~2sa21!

ca~ca12sa11!
. ~2!

This is achieved by showing that it can be derived from
~graded! boundary quantum inverse scattering method5,8

Here we emphasize that a special case of this model, co
sponding tosa5 1

2 , has been studied in Ref. 19.
The second choice of couplings that leads to an integra

model is given by

H52 (
j 51,s

L21

~cj ,s
† cj 11,s1H.c.!~12nj ,2s2nj 11,2s!

2 (
j 51

L21

~cj ,↑
† cj ,↓

† cj 11,↓cj 11,↑1H.c.!

22(
j 51

L21

~Sj•Sj 111 3
4 njnj 11!

22(
j 51

L21

nj ,↓nj ,↑~nj 11,↓nj 11,↑2nj 11!

22(
j 51

L21

nj 11,↓nj 11,↑~nj ,↓nj ,↑2nj !1JaS1•Sa1Van1

1Uan1↑n1↓1JbSL•Sb1VbnL1UbnL↑nL↓ . ~3!
ry
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In this case we can introduce integrable Kondo impurities
the boundary by choosing

Ja5
8

~2ca12sa11!~2ca22sa21!
,

Va52
4ca

214ca24sa~sa11!23

~2ca12sa11!~2ca22sa21!
, ~4!

Ua5
4ca

218ca24sa~sa11!25

~2ca12sa11!~2ca22sa21!
.

A third choice of couplings that leads to an integrable mo
is

H52 (
j 51,s

L21

~cj ,s
† cj 11,s1H.c.!~12nj ,2s2nj 11,2s!

2 (
j 51

L21

~cj ,↑
† cj ,↓

† cj 11,↓cj 11,↑1H.c.!

22(
j 51

L21

~Sj•Sj 112 1
4 njnj 11!

22(
j 51

L21

nj ,↓nj ,↑nj 11,↓nj 11,↑1JaS1•Sa1Van1

1Uan1↑n1↓1JbSL•Sb1VbnL1UbnL↑nL↓ , ~5!

where integrable Kondo impurities on the boundary are
tained by the choice

Ja5
8

~2ca12sa11!~2ca22sa21!
,

Va5
~2ca

221!224sa~sa11!

~2ca12sa11!~2ca22sa21!
, ~6!

Ua52
4~ca

221!22~2sa11!2

~2ca12sa11!~2ca22sa21!
.

Let us recall that the Hamiltonian of the one-dimension
~1D! supersymmetric extended Hubbard model with perio
boundary conditions commutes with the transfer matr
which is the supertrace of the monodromy matrixT(u):

T~u!5R0L~u!•••R01~u!. ~7!

Here the quantumR matrix R(u) comes from the fundamen
tal representation of gl(2u2) and takes the form
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R~u!5

¨

u22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 u 0 0 22 0 0 0 0 0 0 0 0 0 0 0

0 0 u 0 0 0 0 0 22 0 0 0 0 0 0 0

0 0 0 u 0 0 0 0 0 0 0 0 22 0 0 0

0 22 0 0 u 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 u22 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 u 0 0 22 0 0 0 0 0 0

0 0 0 0 0 0 0 u 0 0 0 0 0 22 0 0

0 0 22 0 0 0 0 0 u 0 0 0 0 0 0 0

0 0 0 0 0 0 22 0 0 u 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 u12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 u 0 0 2 0

0 0 0 22 0 0 0 0 0 0 0 0 u 0 0 0

0 0 0 0 0 0 0 22 0 0 0 0 0 u 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 u 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u12
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It should be noted that the supertrace is carried out for
auxiliary superspaceV. The elements of the supermatr
T(u) are the generators of an associative superalgebrA
defined by the relations

R12~u12u2!T1~u1!T2~u2!5T2~u2!T1~u1!R12~u12u2!,
~9!

where X1[X^ 1, X2[1^ X for any supermatrix X
PEnd(V). For later use, we list some useful properties e
joyed by theR matrix: ~i! unitarity: R12(u)R21(2u)5r(u);
~ii ! crossing unitarity: R12

st2(2u11)R21
st2(u)5 r̃(u) with

r(u),r̃(u) being some scalar functions.
In order to describe integrable models on open chains,

introduce two associative superalgebrasT2 and T1 defined
by theR matrix R(u12u2) and the relations5,8

R12~u12u2!T1,2~u1!R21~u11u2!T2,2~u2!

5T2,2~u2!R12~u11u2!T1,2~u1!R21~u12u2!,

~10!

R21
st1ist2~2u11u2!T 1,1

st1 ~u1!$@R21
st1~u11u2!#21% ist2T 2,1

ist2~u2!

5T 2,1
ist2~u2!$@R12

ist2~u11u2!#21%st1

3T 1,1
st1 ~u1!R12

st1ist2~2u11u2!, ~11!

respectively. Here the supertranspositionsta (a51,2) is
only carried out in theath factor superspace ofV^ V,
whereasista denotes the inverse operation ofsta . By modi-
fying Sklyanin’s arguments,12 one may show that the quan
tities t(u) given by t(u)5str@T1(u)T2(u)# constitute a
commutative family, i.e.,@t(u1),t(u2)#50.

One can obtain a class of realizations of the superalge
T1 andT2 by choosingT6(u) to be the form
e

-

e

as

T2~u!5T2~u!T̃2~u!T2
21~2u!,

T 1
st~u!5T1

st~u!T̃1
st~u!@T1

21~2u!#st ~12!

with

T2~u!5R0M~u!•••R01~u!,

T1~u!5R0L~u!•••R0,M11~u!, T̃6~u!5K6~u!,
~13!

where K6(u), called boundaryK matrices, are representa
tions of T6 in some representation superspace.

We now solve Eqs.~10! and~11! for K2(u) andK1(u).
For the quantumR matrix ~8!, one may check that the matri
K2(u) given by

K2~u!5S 1 0 0 0

0 1 0 0

0 0 A2~u! B2~u!

0 0 C2~u! D2~u!

D , ~14!

where

A2~u!52
u212u24ca

224ca~2sa11!14uSa
z

~u22ca!~u22ca24sa22!
,

B2~u!52
4uSa

2

~u22ca!~u22ca24sa22!
,

~15!

C2~u!52
4uSa

1

~u22ca!~u22ca24sa22!
,

D2~u!52
u212u24ca

224ca~2sa11!24uSa
z

~u22ca!~u22ca24sa22!
,
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satisfies Eq.~10!. HereS65Sx6 iSy. The matrixK1(u) can
be obtained from the isomorphism of the superalgebrasT2

andT1 . Indeed, given a solutionT2 of Eq. ~10!, thenT1(u)
defined by

T 1
st~u!5T2~2u! ~16!

is a solution of Eq.~11!. The proof follows from some alge
braic computations upon substituting Eq.~16! into Eq. ~11!
and making use of the properties of theR matrix. Therefore,
one may choose the boundary matrixK1(u) as

K1~u!5S 1 0 0 0

0 1 0 0

0 0 A1~u! B1~u!

0 0 C1~u! D1~u!

D , ~17!

with

A1~u!52
u222u24cb

224cb~2sb21!18sb14uSb
z

~u22cb12!~u22cb24sb!
,

B1~u!52
4uSb

2

~u22cb12!~u22cb24sb!
,

~18!

C1~u!52
4uSb

1

~u22cb12!~u22cb24sb!
,

D1~u!52
u222u24cb

224cb~2sb21!18sb24uSb
z

~u22cb12!~u22cb24sb!
.

Now it can be shown that Hamiltonian~1! is related to the
second derivative of the boundary transfer matrixt(u) with
respect to the spectral parameteru at u50 ~up to an unim-
portant additive constant!
H5
t9~0!

4~V12W!

5 (
j 51

L21

hj , j 111
1

2
K1,28 ~0!1

1

2~V12W!

3@str0„K0,1~0!GL0…12 str0„K80,1~0!HL0
R
…

1str0„K0,1~0!~HL0
R !2

…#, ~19!

with

h52
1

2

d

du
PR~u!,

where P denotes the graded permutation operator, and
subscript 0 denotes the four-dimensional auxiliary sup
spaceV5C2,2 with the gradingP@ i #50 if i 51,2 and 1 if
i 53,4, and

V5str0K0,8 1~0!, W5str0„K0,1~0!HL0
R
…,

~20!

Hi , j
R 5Pi , jRi , j8 ~0!, Gi , j5Pi , jRi , j9 ~0!.

This implies that this model, as with the following tw
model we will study, admits an infinite number of mutual
commuting conserved currents, thus assuring its integra
ity.

The second choice of integrable couplings results fr
use of anR matrix obtained by imposing theZ2 grading
associated with two bosonic and two fermionic states to
fundamental su(4)R matrix, which reads
R~u!5

¨

u22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 u 0 0 22 0 0 0 0 0 0 0 0 0 0 0

0 0 u 0 0 0 0 0 22 0 0 0 0 0 0 0

0 0 0 u 0 0 0 0 0 0 0 0 22 0 0 0

0 22 0 0 u 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 u22 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 u 0 0 22 0 0 0 0 0 0

0 0 0 0 0 0 0 u 0 0 0 0 0 22 0 0

0 0 22 0 0 0 0 0 u 0 0 0 0 0 0 0

0 0 0 0 0 0 22 0 0 u 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2u12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2u 0 0 2 0

0 0 0 22 0 0 0 0 0 0 0 0 u 0 0 0

0 0 0 0 0 0 0 22 0 0 0 0 0 u 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 2u 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2u12

©
. ~21!
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We now solve Eqs.~10! and~11! for K2(u) andK1(u). For
Eq. ~21!, we find that the matrixK2(u) given by Eq.~14!
where

A2~u!52
u222u24ca

214sa~sa11!1124uSa
z

~u12ca22sa21!~u12ca12sa11!
,

B2~u!5
4uSa

2

~u12ca22sa21!~u12ca12sa11!
,

~22!

C2~u!5
4uSa

1

~u12ca22sa21!~u12ca12sa11!
,

D2~u!52
u222u24ca

214sa~sa11!1114uSa
z

~u12ca22sa21!~u12ca12sa11!
,

satisfies Eq.~10!. The matrixK1(u) can again be obtaine
from the isomorphism of the superalgebrasT2 and T1

through

T 1
st~u!5T2~2u14!. ~23!

Therefore, one choose the boundary matrixK1(u) as

K1~u!5S 1 0 0 0

0 1 0 0

0 0 A1~u! B1~u!

0 0 C1~u! D1~u!

D ~24!

with

A1~u!5
u226u24cb

228cb14sa~sb11!1524~u24!Sb
z

~u12cb22sb23!~u12cb12sb21!
,

B1~u!52
4~u24!Sb

2

~u12cb22sb23!~u12cb12sb21!
,

C1~u!52
4~u24!Sb

1

~u12cb22sb23!~u12cb12sb21!
,

D1~u!

5
u226u24cb

228cb14sa~sb11!1514~u24!Sb
z

~u12cb22sb23!~u12cb12sb21!
.

~25!

For this example it can be shown that the Hamiltonian~3! is
related to the logarithmic derivative of the transfer mat
t(u) with respect to the spectral parameteru at u50 ~up to
an additive chemical potential term!

H5 (
j 51

L21

hj , j 111
1

2
K1,28 ~0!1

str0~K0,1
~0!HL0!

str0 K0,1~0!
, ~26!

with

h52
1

2

d

du
PR~u!

and subject to the constraints~4!.
The third choice of integrable couplings results from u

of the R matrix obtained by imposing theZ2 grading to the
fundamental gl(3u1) R matrix which reads
R~u!5

¨

2u22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 u 0 0 22 0 0 0 0 0 0 0 0 0 0 0

0 0 u 0 0 0 0 0 22 0 0 0 0 0 0 0

0 0 0 u 0 0 0 0 0 0 0 0 22 0 0 0

0 22 0 0 u 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 u22 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 u 0 0 22 0 0 0 0 0 0

0 0 0 0 0 0 0 u 0 0 0 0 0 22 0 0

0 0 22 0 0 0 0 0 u 0 0 0 0 0 0 0

0 0 0 0 0 0 22 0 0 u 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2u12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2u 0 0 2 0

0 0 0 22 0 0 0 0 0 0 0 0 u 0 0 0

0 0 0 0 0 0 0 22 0 0 0 0 0 u 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 2u 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2u12

©
.

~27!
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Again we solve Eqs.~10! and ~11! for K2(u) and K1(u).
For Eq.~27! we obtain Eqs.~14! and ~22!, and

T 1
st~u!5JT2~2u12!, J5diag~1,21,1,1!, ~28!

giving

K1~u!5S 1 0 0 0

0 21 0 0

0 0 A1~u! B1~u!

0 0 C1~u! D1~u!

D ~29!

with

A1~u!52
u222u24cb

214sa~sb11!1124~u22!Sb
z

~u12cb22sb23!~u12cb12sb21!
,

B1~u!5
4~u22!Sb

2

~u12cb22sb23!~u12cb12sb21!
,

~30!

C1~u!5
4~u22!Sb

1

~u12cb22sb23!~u12cb12sb21!
,

D1~u!52
u222u24cb

214sa~sb11!1114~u22!Sb
z

~u12cb22sb23!~u12cb12sb21!
.

The Hamiltonian~5! is related to the logarithmic derivativ
of the transfer matrixt(u) with respect to the spectral pa
rameteru at u50 ~up to an additive chemical potential term!

H5 (
j 51

L21

hj , j 111
1

2
K18, 2~0!1

str0~K0,1
~0!HL0!

str0 K0,1~0!
, ~31!

with

h52
1

2

d

du
PR~u!.

For this case we obtain Eq.~5! subject to the constraints~6!.

III. THE BETHE ANSATZ SOLUTIONS

Having established the quantum integrability of the mo
els, let us now diagonalize the Hamiltonians by means of
algebraic Bethe ansatz method.12,20 For the first case~1!,
introduce the ‘‘doubled’’ monodromy matrixU(u):

U~u!5T~u!K2~u!T̃~u!

[S A~u! B1~u! B2~u! B3~u!

C1~u! D11~u! D12~u! D13~u!

C2~u! D21~u! D22~u! D23~u!

C3~u! D31~u! D32~u! D33~u!
D , ~32!

where T̃(u)5T21(2u). Substituting into the reflection
equation~10! we may draw the following commutation rela
tions:
-
e

Ďbd~u1!Bc~u2!5
~u12u222!~u11u224!

~u12u2!~u11u222!
r ~u11u222!gh

eb

3r ~u12u2!cd
ih Be~u2!Ďgi~u1!

2
2~u122!u2

~u11u222!~u121!~u221!

3r ~2u122!cd
gbBg~u1!A~u2!

1
2~u122!

~u12u2!~u121!
r ~2u122! id

gb

3Bg~u1!Ďic~u2!, ~33!

A~u1!Bb~u2!5
~u12u212!~u11u2!

~u12u2!~u11u222!
Bb~u2!A~u1!

2
2~u11u2!

~u12u2!~u11u222!
Bb~u1!A~u2!

1
2

u11u222 FBa~u1!S Ďab~u2!

2
1

u221
dabA~u2! D G . ~34!

Here

Dbd~u!5Ďbd~u!2
1

u21
dbdA~u!

and the matrixr (u), which in turn satisfies the quantum
Yang-Baxter equation, takes the form,

r 11
11~u!51, r 22

22~u!5r 33
33~u!52

u12

u22
,

r 12
12~u!5r 13

13~u!5r 21
21~u!5r 31

31~u!5r 23
23~u!5r 32

32~u!52
2

u22
,

r 21
12~u!5r 12

21~u!5r 31
13~u!5r 13

31~u!5
u

u22
,

r 32
23~u!5r 23

32~u!52
u

u22
. ~35!

Next choose Bethe stateuV& of the form

uV&5Bi 1
~u1!•••Bi N

~uN!uC̄&Fi 1••• i N, ~36!

with uC̄& being the pseudovacuum. Acting the transfer m
trix t(u) on the stateuV& we havet(u)uV&5L(u)uV& with
the eigenvalue
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L~u!5
u

u21

~cb2 1
2 u!

~cb2 1
2 u21!

~cb2 1
2 u12sb11!

~cb2 1
2 u12sb!

3)
j 51

N
~u1uj !~u2uj12!

~u2uj !~u1uj22!
1

u

u21 S u

u22D 2L

3)
j 51

N
~u2uj22!~u1uj24!

~u2uj !~u1uj22!
L (1)~u;$ui%!,

~37!

provided the parameters$uj% satisfy

uj

uj22

~cb2 1
2 uj !

~cb2 1
2 uj21!

~cb2 1
2 uj12sb11!

~cb2 1
2 uj12sb!

S uj22

uj
D 2L

5)
iÞ j
i 51

N
~uj2ui22!

~uj2ui12!

~uj1ui24!

~uj1ui !
L (1)~uj ;$ui%!. ~38!

Here L (1)(u;$ui%) is the eigenvalue of the transfer matr
t (1)(u) for the reduced problem that arises out of ther ma-
trices from the first term in the right-hand side of Eq.~33!
with the reduced boundaryK matricesK6

(1)(u):

K2
(1)~u!5S 1 0 0

0 A2
(1)~u! B2

(1)~u!

0 C2
(1)~u! D2

(1)~u!
D , ~39!

where

A2
(1)~u!52

u224ca
228saca14sa14~u21!Sa

z

~u22ca!~u22ca24sa22!
,

B2
(1)~u!52

4~u21!Sa
2

~u22ca!~u22ca24sa22!
,

~40!

C2
(1)~u!52

4~u21!Sa
1

~u22ca!~u22ca24sa22!
,

D2
(1)~u!52

u224ca
228saca14sa24~u21!Sa

z

~u22ca!~u22ca24sa22!

and

K1
(1)~u!5S 1 0 0

0 A1
(1)~u! B1

(1)~u!

0 C1
(1)~u! D1

(1)~u!
D , ~41!

where

A1
(1)~u!52

u222u24cb
224cb~2sb21!18sb14uSb

z

~u22cb12!~u22cb24sb!
,

B1
(1)~u!52

4uSb
2

~u22cb12!~u22cb24sb!
,

C1
(1)~u!52

4uSb
1

~u22cb12!~u22cb24sb!
,

D1
(1)~u!52

u222u24cb
224cb~2sb21!18sb24uSb

z

~u22cb12!~u22cb24sb!
.

~42!

HereK2
(1)(u), the boundaryK matrix after the first nesting

follows from the relation

Ďdd~u!uC&[
u

u21
Kdd

(1)~u!uC&

5S K2~u!dd1
1

u21D S u

u22D 2L

uC&,

Ďdb~u!uC&[
u

u21
Kdb

(1)~u!uC&5K2~u!dbS u

u22D 2L

uC&.

~43!

Indeed, applying the monodromy matrixT(u) and its ‘‘ad-
joint’’ T̃(u) to the pseudovacuum, we have

T11~u!uC&5uC&, Tdd~u!uC&5S u

u22D L

uC&,

T1d~u!uC&Þ0, Tdb~u!uC&50, Td1~u!uC&50,
~44!

T̃11~u!uC&5uC&, T̃dd~u!uC&5S u

u22D L

uC&,

T̃1d~u!uC&Þ0, T̃db~u!uC&50, T̃d1~u!uC&50,

wheredÞb, d,b52,3,4. Then we have

A~u!uC&5uC&,

Bd~u!uC&Þ0, Cd~u!uC&50,
~45!

Ddb~u!uC&5S u

u22D 2L

K2~u!dbuC&,

Ddd~u!uC&5S u

u22D 2LS K2~u!dd1
1

u21D uC&2
1

u21
uC&.

~u21!T21~u!T̃12~u!2T22~u!T̃22~u!2T23~u!T̃32~u!

2T24~u!T̃42~u!

52T̃11~u!T11~u!1~u21!T̃12~u!T21~u!

2T̃13~u!T31~u!2T̃14~u!T41~u!,

~u21!T21~u!T̃13~u!2T22~u!T̃23~u!2T23~u!T̃33~u!

2T24~u!T̃43~u!5uT̃13~u!T21~u!,

~u21!T21~u!T̃14~u!2T22~u!T̃24~u!2T23~u!T̃34~u!

2T24~u!T̃44~u!5uT̃14~u!T21~u!,
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T31~u!T̃12~u!2~u21!T32~u!T̃22~u!1T33~u!T̃32~u!

1T34~u!T̃42~u!52uT̃22~u!T32~u!,

T31~u!T̃13~u!2~u21!T32~u!T̃23~u!1T33~u!T̃33~u!

1T34~u!T̃43~u!

5T̃21~u!T12~u!1T̃22~u!T22~u!1~u11!T̃23~u!T32~u!

1T̃24~u!T42~u!,

T31~u!T̃14~u!2~u21!T32~u!T̃24~u!1T33~u!T̃34~u!

1T34~u!T̃44~u!5uT̃24~u!T32~u!

T41~u!T̃12~u!1T42~u!T̃22~u!1~u11!T43~u!T̃32~u!

1T44~u!T̃42~u!

5uT̃32~u!T43~u!

T41~u!T̃13~u!1T42~u!T̃23~u!1~u11!T43~u!T̃33~u!

1T44~u!T̃43~u!

5uT̃33~u!T43~u!,

T41~u!T̃14~u!1T42~u!T̃24~u!1~u11!T43~u!T̃34~u!

1T44~u!T̃44~u!

5T̃31~u!T13~u!1T̃32~u!T23~u!

1T̃33~u!T33~u!1~u11!T̃34~u!T43~u!, ~46!

which come from a variant of the~graded! Yang-Baxter al-
gebra~9! with the R matrix ~8!,

T1~u!R~2u!T̃2~u!5T̃2~u!R~2u!T1~u!. ~47!
Noticing the changeu→u21 with respect to the origina
problem, one may check that these boundaryK matrices sat-
isfy the reflection equations for the reduced problem. Af
some algebra the reduced transfer matrixt (1)(u) may be
recognized as that for the inhomogeneous supersymm
t-J open chain interacting with the Kondo impurities of a
bitrary spins, which has been diagonalized in Ref. 13. T
final result is

L (1)~u;$uj%!5
u

u22

~cb2 1
2 u!

~cb2 1
2 u12sb!

~cb2 1
2 u12sb11!

~cb2 1
2 u21!

3 )
a51

M1 ~u2va12!~u1va22!

~u2va!~u1va24!

2
u21

u22)j 51

N
~u2uj !~u1uj22!

~u2uj22!~u1uj24!

3 )
a51

M1 ~u2va12!~u1va22!

~u2va!~u1va24!

3L (2)~u;$uj%,$va%! ~48!

provided the parameters$va% satisfy

va

va21

~cb2 1
2 va!~cb2 1

2 va12sb11!

~cb2 1
2 va12sb!~cb2 1

2 va21!

3)
j 51

N
~va2uj22!~va1uj24!

~va2uj !~va1uj22!

52L (2)~va ;$ui%,$vb%!. ~49!

HereL (2)(u;$uj%,$va%) is the eigenvalue of the transfer ma
trix t (2)(u) for theM1-site inhomogeneousXXX open chain
interacting with the Kondo impurities of arbitrary spins,
L (2)~u;$uj%,$va%!52
~cb2 1

2 u!

~cb2 1
2 u12sb!

~cb2 1
2 u12sb11!

~cb2 1
2 u21!

)
g5a,b

cg1 1
2 u12sg21

cg2 1
2 u12sg11

H u

u21)
b51

M2 ~u2wb23!~u1wb23!

~u2wb21!~u1wb21!

1
u22

u21 )
g5a,b

~cg1 1
2 u21!

~cg2 1
2 u!

~cg2 1
2 u12sg!

~cg1 1
2 u12sg21!

)
a51

M1 ~u2va!~u1va24!

~u2va12!~u1va22!

3 )
b51

M2 ~u2wb11!~u1wb11!

~u2wb21!~u1wb21!J , ~50!

provided the parameters$wb% satisfy

)
g5a,b

~cg1 1
2 wb2 1

2 !cg2 1
2 wb12sg2 1

2 )

~cg2 1
2 wb2 1

2 !~cg1 1
2 wb12sg2 1

2 !
)
a51

M1 ~wb2va11!~wb1va23!

~wb2va13!~wb1va21!
5 )

dÞb
d51

M2 ~wb2wd22!~wb1wd22!

~wb2wd12!~wb1wd12!
. ~51!

After a shift of the parametersuj→uj11,va→va12, the Bethe ansatz equations~38!, ~49!, and ~51! may be rewritten as
follows:
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S uj21

uj11D 2L

)
iÞ j
i 51

N
~uj2ui12!~uj1ui12!

~uj2ui22!~uj1ui22!

5 )
a51

M1 ~uj2va11!~uj1va11!

~uj2va21!~uj1va21!
,

)
g5a,b

cg1 1
2 va12sg

cg2 1
2 va12sg

)
j 51

N
~va2uj11!~va1uj11!

~va2uj21!~va1uj21!

5 )
b51

M2 ~va2wb11!~va1wb11!

~va2wb21!~va1wb21!
,

)
g5a,b

~cg1 1
2 wb2 1

2 !

~cg2 1
2 wb2 1

2 !

~cg2 1
2 wb12sg2 1

2 !

~cg1 1
2 wb12sg2 1

2 !

3 )
a51

M1 ~wb2va21!

~wb2va11!

~wb1va21!

~wb1va11!

5 )
dÞb
d51

M2 ~wb2wd22!

~wb2wd12!

~wb1wd22!

~wb1wd12!
, ~52!

with the corresponding energy eigenvalueE of the model

E52(
j 51

N
4

uj
221

. ~53!

We now perform the algebraic Bethe ansatz method12,20pro-
cedure for the second couplings~3!. We introduce the
‘‘doubled’’ monodromy matrixU(u), as in Eq.~32!. Substi-
tuting in the reflection equation~10! we may draw commu-
tation relations Eqs.~33! and ~34!. Here

Dbd~u!5Ďbd~u!2
1

u21
dbdA~u!

and the matrixr (u), which in turn satisfies the quantum
Yang-Baxter equation, takes the form,

r 11
11~u!5r 22

22~u!5r 33
33~u!51,

r 12
12~u!5r 13

13~u!5r 21
21~u!5r 31

31~u!5r 23
23~u!5r 32

32~u!52
2

u22
,

r 21
12~u!5r 12

21~u!5r 31
13~u!5r 13

31~u!5r 32
23~u!5r 23

32~u!5
u

u22
.

~54!

Choosing the Bethe stateuV& as Eq.~36! with uC& being the
pseudovacuum, and acting the transfer matrixt(u) on the
stateuV&,we havet(u)uV&5L(u)uV&, with the eigenvalue
L~u!5
u24

u21

~cb1 1
2 u1sb1 1

2 !

~cb1 1
2 u1sb2 1

2 !

~cb1 1
2 u2sb2 1

2 !

~cb1 1
2 u2sb2 3

2 !

3)
j 51

N
~u1uj !~u2uj12!

~u2uj !~u1uj22!

1
u

u21 S u

u22D 2L

)
j 51

N
~u2uj22!~u1uj24!

~u2uj !~u1uj22!

3L (1)~u;$ui%!, ~55!

provided the parameters$uj% satisfy

uj24

uj22

~cb1 1
2 uj 1sb1 1

2 !

~cb1 1
2 uj 1sb2 1

2 !

~cb1 1
2 uj 2sb2 1

2 !

~cb1 1
2 uj 2sb2 3

2 !
S uj22

uj
D 2L

5)
iÞ j
i 51

N
~uj2ui22!

~uj2ui12!

~uj1ui24!

~uj1ui !
L (1)~uj ;$ui%!. ~56!

Here L (1)(u;$ui%) is the eigenvalue of the transfer matr
t (1)(u) for the reduced problem, that arises out of ther ma-
trices from the first term in the right-hand side of Eq.~58!,
with the reduced boundaryK matricesK6

(1)(u) from Eq.~39!
where

A2
(1)~u!52

u224ca
224ca14sa~sa11!1324~u21!Sa

z

~u12ca22sa21!~u12ca12sa11!
,

B2
(1)~u!5

4~u21!Sa
2

~u12ca22sa21!~u12ca12sa11!
,

~57!

C2
(1)~u!5

4~u21!Sa
1

~u12ca22sa21!~u12ca12sa11!
,

D2
(1)~u!52

u224ca
224ca14sa~sa11!1314~u21!Sa

z

~u12ca22sa21!~u12ca12sa11!

and Eq.~41! where

A1
(1)~u!

5
u226u24cb

228cb14sb~sb11!1524~u24!Sb
z

~u12cb22sb23!~u12cb12sb21!

B1
(1)~u!52

4~u24!Sb
2

~u12cb22sb23!~u12cb12sb21!
,

C1
(1)~u!52

4~u24!Sb
1

~u12cb22sb23!~u12cb12sb21!
,
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D1
(1)~u!

5
u226u24cb

228cb14sb~sb11!1514~u24!Sb
z

~u12cb22sb23!~u12cb12sb21!
.

~58!

HereK2
(1)(u), the boundaryK matrices after the first nesting

follows from relations ~43!. Indeed, applying the mono
dromy matrixT(u) and its ‘‘adjoint’’ T̃(u) to the pseudo-
vacuum, we have Eqs.~44! and ~45!

~u21!T21~u!T̃12~u!2T22~u!T̃22~u!2T23~u!T̃32~u!

2T24~u!T̃42~u!

52T̃11~u!T11~u!1~u21!T̃12~u!T21~u!

2T̃13~u!T31~u!2T̃14~u!T41~u!,

~u21!T21~u!T̃13~u!2T22~u!T̃23~u!2T23~u!T̃33~u!

2T24~u!T̃43~u!5uT̃13~u!T21~u!

~u21!T21~u!T̃14~u!2T22~u!T̃24~u!2T23~u!T̃34~u!

2T24~u!T̃44~u!5uT̃14~u!T21~u!

T31~u!T̃12~u!2~u21!T32~u!T̃22~u!1T33~u!T̃32~u!

1T34~u!T̃42~u!52uT̃22~u!T32~u!

T31~u!T̃13~u!2~u21!T32~u!T̃23~u!1T33~u!T̃33~u!

1T34~u!T̃43~u!

5T̃21~u!T12~u!1T̃22~u!T22~u!

2~u21!T̃23~u!T32~u!1T̃24~u!T42~u!,

T31~u!T̃14~u!2~u21!T32~u!T̃24~u!1T33~u!T̃34~u!

1T34~u!T̃44~u!52uT̃24~u!T32~u!
T41~u!T̃12~u!1T42~u!T̃22~u!2~u21!T43~u!T̃32~u!

1T44~u!T̃42~u!5uT̃32~u!T43~u!

T41~u!T̃13~u!1T42~u!T̃23~u!2~u21!T43~u!T̃33~u!

1T44~u!T̃43~u!52uT̃33~u!T43~u!,

T41~u!T̃14~u!1T42~u!T̃24~u!2~u21!T43~u!T̃34~u!

1T44~u!T̃44~u!

5T̃31~u!T13~u!1T̃32~u!T23~u!1T̃33~u!T33~u!

2~u21!T̃34~u!T43~u!, ~59!

which come from a variant of the~graded! Yang-Baxter al-
gebra~9! with the R matrix ~21!, as in Eq.~47!.

Noticing the changeu→u21 with respect to the origina
problem, one may check that these boundaryK matrices sat-
isfy the reflection equations for the reduced problem. Af
some algebra,the reduced transfer matrixt (1)(u) may be rec-
ognized as that for the inhomogeneous su~3! t-J open chain
interacting with the Kondo impurities of arbitrary spin
which has been diagonalized in Ref. 13. The final result

L (1)~u;$uj%!5
u24

u22

~cb1 1
2 u1sb1 1

2 !

~cb1 1
2 u1sb2 1

2 !

~cb1 1
2 u2sb2 1

2 !

~cb1 1
2 u2sb2 3

2 !

3 )
a51

M1 ~u2va12!~u1va22!

~u2va!~u1va24!

2
u21

u22)j 51

N
~u2uj !~u1uj22!

~u2uj22!~u1uj24!

3 )
a51

M1 ~u2va22!~u1va26!

~u2va!~u1va24!

3L (2)~u;$uj%,$va%!, ~60!

provided the parameters$va% satisfy
va24

va23

~cb1 1
2 va1sb1 1

2 !

~cb1 1
2 va1sb2 1

2 !

~cb1 1
2 va2sb2 1

2 !

~cb1 1
1 va2sb2 3

2 !
)
j 51

N
~va2uj22!~va1uj24!

~va2uj !~va1uj22!

3 )
zÞa
z51

M1 ~va2vz12!~va1vz22!

~va2vz22!~va1vz26!
52L (2)~va ;$ui%,$vb%!. ~61!

Here L (2)(u;$uj%,$va%) is the eigenvalue of the transfer matrixt (2)(u) for the M1-site inhomogeneousXXX open chain
interacting with the Kondo impurities of arbitrary spins,
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L (2)~u;$uj%,$va%!52
~cb1 1

2 u1sb1 1
2 !

~cb1 1
2 u1sb2 1

2 !

~cb1 1
2 u2sb2 1

2 !

~cb1 1
2 u2sb2 3

2 !
)

g5a,b

cg2 1
2 u1sg1 5

2

cg1 1
2 u1sg1 1

2

3H u24

u23)
b51

M2 ~u2wb12!~u1wb24!

~u2wb!~u1wb26!
1

u22

u23 )
g5a,b

~cg1 1
2 u1sg2 1

2 !

~cg1 1
2 u2sg2 1

2 !

~cg2 1
2 u2sg1 5

2 !

~cg2 1
2 u1sg1 5

2 !

3 )
a51

M1 ~u2va!~u1va24!

~u2va22!~u1va26! )b51

M2 ~u2wb22!~u1wb28!

~u2wb!~u1wb26! J , ~62!
n

provided the parameters$wb% satisfy

)
g5a,b

~cg1 1
2 wb1sg2 1

2 !~cg2 1
2 wb2sg1 5

2 !

~cg2 1
2 wb1sg1 5

2 !~cg1 1
2 wb2sg2 1

2 !

3 )
a51

M1 ~wb2va!~wb1va24!

~wb2va22!~wb1va26!

5 )
dÞb
d51

M2 ~wb2wd12!~wb1wd24!

~wb2wd22!~wb1wd28!
. ~63!

After a shift of the parametersuj→uj11,va→va12,wb
→wb13, the Bethe ansatz equations~56! , ~61!, and ~63!
may be rewritten as follows:

S uj21

uj11D 2L

)
iÞ j
i 51

N
~uj2ui12!~uj1ui12!

~uj2ui22!~uj1ui22!

5 )
a51

M1 ~uj2va11!~uj1va11!

~uj2va21!~uj1va21!
,

)
g5a,b

cg1 1
2 va1sg1 3

2

cg2 1
2 va1sg1 3

2

,)
j 51

N
~va2uj21!~va1uj21!

~va2uj11!~va1uj11!

5 )
b51

M2 ~va2wb11!~va1wb11!

~va2wb21!~va1wb21!
,

3 )
zÞa
z51

M1 ~va2vz22!~va1vz22!

~va2wz12!~va1vz12!

)
g5a,b

~cg1 1
2 wb1sg11!~cg2 1

2 wb2sg11!

~cg2 1
2 wb1sg11!~cg1 1

2 wb2sg11!

3 )
a51

M1 ~wb2va11!

~wb2va21!

~wb1va11!

~wb1va21!

5 )
dÞb
d51

M2 ~wb2wd12!

~wb2wd22!

~wb1wd12!

~wb1wd22!
, ~64!

with the corresponding energy eigenvalueE of the model in
Eq. ~53!.
We now perform the algebraic Bethe ansatz method12,20

procedure for the third couplings~5!. We introduce the
‘‘doubled’’ monodromy matrixU(u), as in Eq.~32! where
T̃(u)5T21(2u). Substituting into the reflection equatio
~10!, we may draw the following commutation relations,

Ďbd~u1!Bc~u2!5
~u12u222!~u11u2!

~u12u2!~u11u212!
r ~u11u212!gh

eb

3r ~u12u2!cd
ih Be~u2!Ďgi~u1!

2
2u1u2

~u11u212!~u111!~u211!

3r ~2u112!cd
gbBg~u1!A~u2!

1
2u1

~u12u2!~u111!

3r ~2u112! id
gbBg~u1!Ďic~u2!, ~65!

A~u1!Bb~u2!5
~u12u222!~u11u2!

~u12u2!~u11u212!
Bb~u2!A~u1!

2
2~u11u2!

~u12u2!~u11u212!
Bb~u1!A~u2!

2
2

u11u212 FBa~u1!S Ďab~u2!

2
1

u221
dabA~u2! D G . ~66!

Here

Dbd~u!5Ďbd~u!1
1

u11
dbdA~u!

and the matrixr (u), which in turn satisfies the quantum
Yang-Baxter equation, takes the form, of Eq.~54!. Choosing
the Bethe stateuV& as Eq.~36! with uC& being the pseudo-
vacuum, and acting the transfer matrixt(u) on the state
uV&,we havet(u)uV&5L(u)uV&, with the eigenvalue
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L~u!5
u22

u11

~cb1 1
2 u2sb2 1

2 !

~cb1 1
2 u1sb2 1

2 !

~cb1 1
2 u1sb1 1

2 !

~cb1 1
2 u2sb2 3

2 !

3)
j 51

N
~u1uj !~u2uj22!

~u2uj !~u1uj12!
1

u

u11 S 2
u

u12D 2L

3)
j 51

N
~u1uj !~u2uj22!

~u2uj !~u1uj12!
L (1)~u;$ui%!, ~67!

provided the parameters$uj% satisfy

uj22

uj

~cb1 1
2 uj2sb2 1

2 !

~cb1 1
2 uj1sb2 1

2 !

~cb1 1
2 uj1sb1 1

2 !

~cb1 1
2 uj 2sb2 3

2 !
S 2

uj12

uj
D 2L

5)
iÞ j
i 51

N
~uj2ui12!

~uj2ui22!

~uj1ui14!

~uj1ui !
L (1)~uj ;$ui%!. ~68!

Here L (1)(u;$ui%) is the eigenvalue of the transfer matr
t (1)(u) for the reduced problem, which arises out of ther
matrices from the first term in the right-hand side of Eq.~65!,
with the reduced boundaryK matricesK6

(1)(u) from Eq.~39!
where

A2
(1)~u!52

u224ca
214ca14sa~sa11!2124~u11!Sa

z

~u12ca22sa21!~u12ca12sa11!
,

B2
(1)~u!5

4~u11!Sa
2

~u12ca22sa21!~u12ca12sa11!
,

~69!

C2
(1)~u!5

4~u11!Sa
1

~u12ca22sa21!~u12ca12sa11!
,

D2
(1)~u!52

u224ca
214ca14sa~sa11!2114~u11!Sa

z

~u12ca22sa21!~u12ca12sa11!
,

and

K1
(1)~u!5S 21 0 0

0 A1
(1)~u! B1

(1)~u!

0 C1
(1)~u! D1

(1)~u!
D , ~70!

where

A1
(1)~u!52

u222u24cb
214sb~sb11!1124~u22!Sb

z

~u12cb22sb23!~u12cb12sb21!
,

B1
(1)~u!5

4~u22!Sb
2

~u12cb22sb23!~u12cb12sb21!
,

~71!

C1
(1)~u!5

4~u22!Sb
1

~u12cb22sb23!~u12cb12sb21!
,

D1
(1)~u!52

u222u24cb
214sb~sb11!1114~u22!Sb

z

~u12cb22sb23!~u12cb12sb21!
.

HereK2
(1)(u), the boundaryK matrices after the first nesting

follows from the relations
Ďdd~u!uC&[
u

u11
Kdd

(1)~u!uC&

5S K2~u!dd2
1

u11D S 2
u

u12D 2L

uC&,

~72!

Ďdb~u!uC&[
u

u11
Kdb

(1)~u!uC&5K2~u!dbS 2
u

u12D 2L

uC&.

Indeed, applying the monodromy matrixT(u) and its ‘‘ad-
joint’’ T̃(u) to the pseudovacuum, we have

T11~u!uC&5uC&, Tdd~u!uC&5S 2
u

u12D L

uC&,

T1d~u!uC&Þ0, Tdb~u!uC&50, Td1~u!uC&50,
~73!

T̃11~u!uC&5uC&, T̃dd~u!uC&5S 2
u

u12D L

uC&,

T̃1d~u!uC&Þ0, T̃db~u!uC&50, T̃d1~u!uC&50,

wheredÞb, d,b52,3,4. Then we have

A~u!uC&5uC&,

Bd~u!uC&Þ0, Cd~u!uC&50,

Ddb~u!uC&5S 2
u

u12D 2L

K2~u!dbuC&,

~74!

Ddd~u!uC&5S 2
u

u12D 2LS K2~u!dd2
1

u11D uC&

1
1

u11
uC&.

~u11!T21~u!T̃12~u!1T22~u!T̃22~u!1T23~u!T̃32~u!

1T24~u!T̃42~u!

5T̃11~u!T11~u!2~u21!T̃12~u!T21~u!

1T̃13~u!T31~u!1T̃14~u!T41~u!,

~u11!T21~u!T̃13~u!1T22~u!T̃23~u!1T23~u!T̃33~u!

1T24~u!T̃43~u!52uT̃13~u!T21~u!,

~u11!T21~u!T̃14~u!1T22~u!T̃24~u!1T23~u!T̃34~u!

1T24~u!T̃44~u!52uT̃14~u!T21~u!,

T31~u!T̃12~u!2~u21!T32~u!T̃22~u!1T33~u!T̃32~u!

1T34~u!T̃42~u!52uT̃22~u!T32~u!,
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T31~u!T̃13~u!2~u21!T32~u!T̃23~u!1T33~u!T̃33~u!

1T34~u!T̃43~u!

5T̃21~u!T12~u!1T̃22~u!T22~u!

2~u21!T̃23~u!T32~u!1T̃24~u!T42~u!,

T31~u!T̃14~u!2~u21!T32~u!T̃24~u!1T33~u!T̃34~u!

1T34~u!T̃44~u!52uT̃24~u!T32~u!,

T41~u!T̃12~u!1T42~u!T̃22~u!2~u21!T43~u!T̃32~u!

1T44~u!T̃42~u!5uT̃32~u!T43~u!,

T41~u!T̃13~u!1T42~u!T̃23~u!2~u21!T43~u!T̃33~u!

1T44~u!T̃43~u!52uT̃33~u!T43~u!,

T41~u!T̃14~u!1T42~u!T̃24~u!2~u21!T43~u!T̃34~u!

1T44~u!T̃44~u!

5T̃31~u!T13~u!1T̃32~u!T23~u!

1T̃33~u!T33~u!2~u21!T̃34~u!T43~u!, ~75!

which come from a variant of the~graded! Yang-Baxter al-
gebra~9! with the R matrix ~27!, as in Eq.~47!.

Noticing the changeu→u11 with respect to the origina
problem, one may check that these boundaryK matrices sat-
isfy the reflection equations for the reduced problem. Af
some algebra,the reduced transfer matrixt (1)(u) may be rec-
ognized as that for the inhomogeneous su~3! t-J open chain
r

interacting with the Kondo impurities of arbitrary spin
which has been diagonalized in Ref. 13. The final result

L (1)~u;$uj%!5
u22

u

~cb1 1
2 u2sb2 1

2 !

~cb1 1
2 u1sb2 1

2 !

~cb1 1
2 u1sb1 1

2 !

~cb1 1
2 u2sb2 3

2 !

3 )
a51

M1 ~u2va12!~u1va12!

~u2va!~u1va!

2
u11

u )
j 51

N
~u2uj !~u1uj12!

~u2uj22!~u1uj !

3 )
a51

M1 ~u2va22!~u1va22!

~u2va!~u1va!

3L (2)~u;$uj%,$va%!, ~76!

provided the parameters$va% satisfy

va22

va21

~cb1 1
2 va2sb2 1

2 !

~cb1 1
2 va1sb2 1

2 !

~cb1 1
2 va1sb1 1

2 !

~cb1 1
2 va2sb2 3

2 !

3)
j 51

N
~va2uj22!~va1uj !

~va2uj !~va1uj12!

3 )
zÞa
z51

M1 ~va2vz12!~va1vz12!

~va2vz22!~va1vz22!

52L (2)~va ;$ui%,$vb%!. ~77!

HereL (2)(u;$uj%,$va%) is the eigenvalue of the transfer ma
trix t (2)(u) for theM1-site inhomogeneousXXX open chain
interacting with the Kondo impurities of arbitrary spins,
L (2)~u;$uj%,$va%!52
~cb1 1

2 u2sb2 1
2 !

~cb1 1
2 u1sb2 1

2 !

~cb1 1
2 u1sb1 1

2 !

~cb1 1
2 u2sb2 3

2 !
)

g5a,b

cg2 1
2 u1sg1 1

2

cg1 1
2 u1sg1 1

2

3H u22

u21)
b51

M2 ~u2wb12!~u1wb!

~u2wb!~u1wb22!
1

u

u21 )
g5a,b

~cg1 1
2 u1sg2 1

2 !

~cg1 1
2 u2sg2 1

2 !

~cg2 1
2 u2sg1 1

2 !

~cg2 1
2 u1sg1 1

2 !

3 )
a51

M1 ~u2va!~u1va!

~u2va22!~u1va22! )b51

M2 ~u2wb22!~u1wb24!

~u2wb!~u1wb22! J , ~78!

provided the parameters$wb% satisfy

)
g5a,b

~cg1 1
2 wb1sg2 1

2 !~cg2 1
2 wb2sg1 1

2 !

~cg2 1
2 wb1sg1 1

2 !~cg1 1
2 wb2sg2 1

2 !
)
a51

M1 ~wb2va!~wb1va!

~wb2va22!~wb1va22!
5 )

dÞb
d51

M2 ~wb2wd12!~wb1wd!

~wb2wd22!~wb1wd24!
. ~79!

After a shift of the parametersuj→uj21,wb→wb11, the Bethe ansatz equations~68!, ~77!, and ~79! may be rewritten as
follows:

S uj11

uj21D 2L

)
iÞ j
i 51

N
~uj2ui12!~uj1ui12!

~uj2ui22!~uj1ui22!
5 )

a51

M1 ~uj2va11!~uj1va11!

~uj1va21!~uj2va21!
,
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)
g5a,b

cg1 1
2 va1sg1 1

2

cg2 1
2 va1sg1 1

2

)
j 51

N
~va2uj21!~va1uj21!

~va2uj11!~va1uj11!

5 )
b51

M2 ~va2wb11!~va1wb11!

~va2wb21!~va1wb21!

3 )
zÞa
z51

M1 ~va2vz22!~va1vz22!

~va2vz12!~va1vz12!
,

)
g5a,b

~cg1 1
2 wb1sg!

~cg2 1
2 wb1sg!

~cg2 1
2 wb2sg!

~cg1 1
2 wb2sg!

3 )
a51

M1 ~wb2va11!

~wb2va21!

~wb1va11!

~wb1va21!

5 )
dÞb
d51

M2 ~wb2wd12!

~wb2wd22!

~wb1wd12!

~wb1wd22!
, ~80!

with the corresponding energy eigenvalueE of the model in
Eq. ~53!.
br
d
lu

ly
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IV. CONCLUSION

In conclusion, we have studied integrable Kondo pro
lems describing two boundary impurities coupled to on
dimensional extended Hubbard open chains. The quan
integrability of these systems follows from the fact that t
Hamiltonians in each case are derived from a one-param
family of commuting transfer matrices. Moreover, the Bet
ansatz equations and expressions for the energies are de
by means of the algebraic Bethe ansatz approach. We w
like to emphasize that the boundaryK matices found here are
nonregular in that they cannot be factorized into the prod
of a c-numberK matrix and the local momodromy matrice
However, similar to the cases discussed in Refs. 11 and 1
is possible to introduce a singular local monodromy mat
L̃(u) to express the boundaryK matrix K2(u) as

K2~u!5L̃~u!L̃21~2u!, ~81!

where, for example, in the case of the superalgebra gl(2u2)
model,
L̃~u!5S e 0 0 0

0 e 0 0

0 0 u12ca12sa1112Sz 2S2

0 0 2S1 u12ca12sa1122Sz
D , ~82!
e-
pen

ity,
oc-

e-

ame
d:
which constitutes a realization of the Yang-Baxter alge
~9! when e tends to 0. The recent work of Frahm an
Slavnov14 confirms the existence of such nonregular so
tions by means of a projection method.

Finally, we would like to stress that here we have on
considered the case of Kondo impurities in these exten
Hubbard models that are based on the sl(2) subalgebra o
bulk symmetry of the models. It is of course possible
consider other boundary impurities corresponding to diff
ent subalgebra embeddings such as sl(1u1) for the
gl(2u2), gl(3u1) cases or sl(3) for the gl(3u1), gl(4) models
and even gl(2u1) for gl(3u1), gl(2u2). For the case oft-J
models such other types of integrable boundary impuri
have been studied in Ref. 21.
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APPENDIX: DERIVATION OF THE NON- c-NUMBER
BOUNDARY K MATRICES

In this appendix, we sketch the procedure of solving
(Z2-graded! reflection equation forK2(u). To describe
a

-

d
the

-

s

of
e

e

integrable Kondo impurites coupled with the on
dimensional supersymmetric extended Hubbard model o
chain, it is reasonable to assume that

K2~u!5S 1 0 0 0

0 1 0 0

0 0 A~u! B~u!

0 0 C~u! D~u!
D . ~A1!

Throughout, we have omitted all the subscripts for brev
reflecting that the fermionic degrees of freedom do not
cur, as it should be for a magnetic impurity. For theR matrix
~8!, one may get from the reflection equation~10! 54 func-
tional equations, of which 14 are identities. After some alg
braic analysis, together with the SU~2! symmetry, we may
assume that

A~u!5a~u!1b~u!Sz, B~u!5b~u!S2,

C~u!5b~u!S1, D~u!5a~u!2b~u!Sz. ~A2!

There are 10 equations automatically satisfied and 10 s
equations, leaving only 20 equations left to be solve
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A~u1!B~u2!1B~u1!D~u2!5A~u2!B~u1!1B~u2!D~u1!,

C~u1!A~u2!1D~u1!C~u2!5C~u2!A~u1!1D~u2!C~u1!,

u2@A~u1!B~u2!1B~u1!D~u2!#5u1@B~u1!2B~u2!#,

u2@A~u2!B~u1!1B~u2!D~u1!#5u1@B~u1!2B~u2!#,

u2@C~u1!A~u2!1D~u1!C~u2!#5u1@C~u1!2C~u2!#,

u2@C~u2!A~u1!1D~u2!C~u1!#5u1@C~u1!2C~u2!#,

u2@A~u1!A~u2!1B~u1!C~u2!21#5u1@A~u1!2A~u2!#,

u2@A~u2!A~u1!1B~u2!C~u1!21#5u1@A~u1!2A~u2!#,

u2@C~u1!B~u2!1D~u1!D~u2!21#5u1@D~u1!2D~u2!#,

u2@C~u2!B~u1!1D~u2!D~u1!21#5u1@D~u1!2D~u2!#,

2u2@A~u1!B~u2!1B~u1!D~u2!#

52u1@D~u2!B~u1!2D~u1!B~u2!#

1u1u2@D~u2!B~u1!2B~u1!D~u2!#,

2u2@A~u2!B~u1!1B~u2!D~u1!#

52u1@B~u1!A~u2!2B~u2!A~u1!#

1u1u2@B~u1!A~u2!2A~u2!B~u1!#,

2u2@C~u1!A~u2!1D~u1!C~u2!#

52u1@A~u2!C~u1!2A~u1!C~u2!#

1u1u2@A~u2!C~u1!2C~u1!A~u2!#,

2u2@C~u2!A~u1!1D~u2!C~u1!#

52u1@C~u1!D~u2!2C~u2!D~u1!#

1u1u2@C~u1!D~u2!2D~u2!C~u1!#,

2u2@A~u2!A~u1!1B~u2!C~u1!

2C~u1!B~u2!2D~u1!D~u2!#

52u1@A~u1!D~u2!2A~u2!D~u1!#

2u1u2@B~u2!C~u1!2C~u1!B~u2!#,

2u2@A~u1!A~u2!1B~u1!C~u2!

2C~u2!B~u1!2D~u2!D~u1!#

52u1@D~u2!A~u1!2D~u1!A~u2!#

2u1u2@B~u1!C~u2!2C~u2!B~u1!#,

2u2@A~u1!B~u2!1B~u1!D~u2!#

1u1u2@A~u1!B~u2!2B~u2!A~u1!#

52u1@A~u2!B~u1!2A~u1!B~u2!#14@A~u2!B~u1!

1B~u2!D~u1!2A~u1!B~u2!2B~u1!D~u2!#,
2u2@A~u2!B~u1!1B~u2!D~u1!#

1u1u2@B~u2!D~u1!2D~u1!B~u2!#

52u1@B~u1!D~u2!2B~u2!D~u1!#14@A~u1!B~u2!

1B~u1!D~u2!2A~u2!B~u1!2B~u2!D~u1!#,

2u2@C~u1!A~u2!1D~u1!C~u2!#

1u1u2@D~u1!C~u2!2C~u2!D~u1!#

52u1@D~u2!C~u1!2D~u1!C~u2!#14@C~u2!A~u1!

1D~u2!C~u1!2C~u1!A~u2!2D~u1!C~u2!#,

2u2@C~u2!A~u1!1D~u2!C~u1!#

1u1u2@C~u2!A~u1!2A~u1!C~u2!#

52u1@C~u1!A~u2!2C~u2!A~u1!#14@C~u1!A~u2!

1D~u1!C~u2!2C~u2!A~u1!2D~u2!C~u1!#,

~A3!

with u15u11u2 ,u25u12u2. Substituting Eq.~A2! into
these equations we find that all these equations are red
to the following three equations:

u1@a~u1!2a~u2!#

5u2@211a~u1!a~u2!1s~s11!b~u1!b~u2!#,

u1@b~u1!2b~u2!#

5u2@a~u1!b~u2!1a~u2!b~u1!2b~u1!b~u2!,

2u1@a~u2!b~u1!2a~u1!b~u2!#

52u2@a~u1!b~u2!1a~u2!b~u1!#

2u2@u112!b~u1!b~u2!]. ~A4!

Taking the limitu1→u2, these equations become

da~u!

du
5

1

2u
@211a~u!21s~s11!b~u!2#,

db~u!

du
5

1

2u
@2a~u!b~u!2b~u!2#,

~A5!

a~u!
db~u!

du
2b~u!

da~u!

du

5
1

2u
@2a~u!b~u!2~u11!b~u!2#.

Solving the first two equations, we have

a~u!5
~c1c22u2!~2s11!1~c22c1!u

~2s11!~c12u!~c22u!
,

~A6!

b~u!5
2~c22c1!u

~2s11!~c12u!~c22u!
,



es
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wherec1 andc2 are integration constants. Substituting th
results into the third equation in Eq.~A5!, we may establis
a relation betweenc1 and c2 : c25c124s22. This is just
the non-c-number boundaryK matrix ~14! ~after a redefini
h

etion of the constant:c1→2c14s12). A similar construc-
tion also works for the quantumR matrix in Eqs.~21! and
~27!.
.
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