79 research outputs found

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Low temperature selective catalytic reduction of NO<sub>x</sub> with NH<sub>3</sub> over Mn-based catalyst: A review

    No full text

    Measurement of the t(t)over-bar production cross-section using e mu events with b-tagged jets in pp collisions at root s=13 TeV with the ATLAS detector

    No full text
    This paper describes a measurement of the inclusive top quark pair production cross-section (sigma(t (t) over bar)) with a data sample of 3.2 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron-muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously sigma(t (t) over bar) and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: s(t (t) over bar)= 818 +/- 8 (stat) +/- 27 (syst) +/- 19 (lumi) +/- 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented. (C) 2016 The Author(s). Published by Elsevier B.V

    Search for single production of vector-like quarks decaying into Wb in pp collisions at root s=8 TeV with the ATLAS detector

    No full text
    A search for singly produced vector-like Q quarks, where Q can be either a T quark with charge +2/3 or a Y quark with charge -4/3, is performed in proton-proton collisions recorded with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 20.3 fb(-1) and was produced with a centre-of-mass energy of root s = 8 TeV. This analysis targets Q -> Wb decays where the W boson decays leptonically. A veto on massive large-radius jets is used to reject the dominant t (t) over bar background. The reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV, is used in the search to discriminate signal from background processes. No significant deviation from the Standard Model expectation is observed, and limits are set on the Q -> Wb cross-section times branching ratio. The results are also interpreted as limits on the QWb coupling and the mixing with the Standard Model sector for a singlet T quark or a Y quark from a doublet. T quarks with masses below 0.95 TeV are excluded at 95 % confidence level, assuming a unit coupling and a BR(T -> Wb) = 0.5, whereas the expected limit is 1.10 TeV

    Search for pair production of gluinos decaying via stop and sbottom in events with b-jets and large missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector

    No full text
    A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino (chi) over tilde (0)(1) is reported. It uses an LHC proton-proton data set at a center-of-mass energy root s = 13 TeV with an integrated luminosity of 3.2 fb(-1) collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as b jets, large missing transverse momentum, and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For (chi) over tilde (0)(1) masses below approximately 700 GeV, gluino masses of less than 1.78 TeVand 1.76 TeV are excluded at the 95% C. L. in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the root s = 8 TeV data set

    Charged-particle distributions at low transverse momentum in root s=13 TeV pp interactions measured with the ATLAS detector at the LHC

    No full text
    Measurements of distributions of charged particles produced in proton-proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 mu b(-1). The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Search for flavour-changing neutral current top-quark decays to q Z in pp collision data collected with the ATLAS detector at root s=8 TeV

    No full text
    A search for the flavour-changing neutral-current decay is presented. Data collected by the ATLAS detector during 2012 from proton-proton collisions at the Large Hadron Collider at a centre-of-mass energy of root s = 8 TeV, corresponding to an integrated luminosity of 20.3 fb(-1), are analysed. Top-quark pair-production events with one top quark decaying through the t -> qZ (q = u,c) channel and the other through the dominant Standard Model mode t -> bW are considered as signal. Only the decays of the Z boson to charged leptons and leptonic W boson decays are used. No evidence for a signal is found and an observed (expected) upper limit on the t -> qZ branching ratio of 7 x 10(-4) (8 x 10(-4)) is set at the 95 % confidence level

    Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector (vol 76, 55, 2016)

    No full text

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at root s=8 TeV with the ATLAS detector

    No full text
    The ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb(-1) of pp collision data at root s = 8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the l nu l'l' (l = mu, e), llq (q) over bar, l nu q (q) over bar and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the llq (q) over bar, l nu q (q) over bar, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimension. (C) 2016 CERN for the benefit of the ATLAS Collaboration. Published by Elsevier B.V

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider (vol 75, 510, 2015)

    No full text
    • …
    corecore