2,792 research outputs found
Achieving secrecy without knowing the number of eavesdropper antennas
The existing research on physical layer security commonly assumes the number
of eavesdropper antennas to be known. Although this assumption allows one to
easily compute the achievable secrecy rate, it can hardly be realized in
practice. In this paper, we provide an innovative approach to study secure
communication systems without knowing the number of eavesdropper antennas by
introducing the concept of spatial constraint into physical layer security.
Specifically, the eavesdropper is assumed to have a limited spatial region to
place (possibly an infinite number of) antennas. From a practical point of
view, knowing the spatial constraint of the eavesdropper is much easier than
knowing the number of eavesdropper antennas. We derive the achievable secrecy
rates of the spatially-constrained system with and without friendly jamming. We
show that a non-zero secrecy rate is achievable with the help of a friendly
jammer, even if the eavesdropper places an infinite number of antennas in its
spatial region. Furthermore, we find that the achievable secrecy rate does not
monotonically increase with the jamming power, and hence, we obtain the
closed-form solution of the optimal jamming power that maximizes the secrecy
rate.Comment: IEEE transactions on wireless communications, accepted to appea
Superfluidity and Stabilities of a Bose-Einstein condensate with periodically modulated interatomic interaction
We study theoretically the superfluidity and stability of a Bose-Einstein
condensate (BEC) whose interatomic scattering length is periodically modulated
with optical Feshbach resonance. Our numerical study finds that the properties
of this periodic BEC are strongly influenced by the modulation strength. When
the modulation strength is small, only the Bloch waves close to the Brillouin
zone edge suffer both Landau and dynamical instabilities. When the modulation
strength is strong enough, all Bloch waves become dynamically unstable. In
other words, the periodic BEC loses its superfluidity completely.Comment: 5 pages, 5 figure
Covert Wireless Communication with a Poisson Field of Interferers
In this paper, we study covert communication in wireless networks consisting
of a transmitter, Alice, an intended receiver, Bob, a warden, Willie, and a
Poisson field of interferers. Bob and Willie are subject to uncertain shot
noise due to the ambient signals from interferers in the network. With the aid
of stochastic geometry, we analyze the throughput of the covert communication
between Alice and Bob subject to given requirements on the covertness against
Willie and the reliability of decoding at Bob. We consider non-fading and
fading channels. We analytically obtain interesting findings on the impacts of
the density and the transmit power of the concurrent interferers on the covert
throughput. That is, the density and the transmit power of the interferers have
no impact on the covert throughput as long as the network stays in the
interference-limited regime, for both the non-fading and the fading cases. When
the interference is sufficiently small and comparable with the receiver noise,
the covert throughput increases as the density or the transmit power of the
concurrent interferers increases
- …