28 research outputs found

    Effectiveness of the innovative 1,7-malaria reactive community-based testing and response (1, 7-mRCTR) approach on malaria burden reduction in Southeastern Tanzania

    Get PDF
    In 2015, a China-UK-Tanzania tripartite pilot project was implemented in southeastern Tanzania to explore a new model for reducing malaria burden and possibly scaling-out the approach into other malaria-endemic countries. The 1,7-malaria Reactive Community-based Testing and Response (1,7-mRCTR) which is a locally-tailored approach for reporting febrile malaria cases in endemic villages was developed to stop transmission and Plasmodium life-cycle. The (1,7-mRCTR) utilizes existing health facility data and locally trained community health workers to conduct community-level testing and treatment.; The pilot project was implemented from September 2015 to June 2018 in Rufiji District, southern Tanzania. The study took place in four wards, two with low incidence and two with a higher incidence. One ward of each type was selected for each of the control and intervention arms. The control wards implemented the existing Ministry of Health programmes. The 1,7-mRCTR activities implemented in the intervention arm included community testing and treatment of malaria infection. Malaria case-to-suspect ratios at health facilities (HF) were aggregated by villages, weekly to identify the village with the highest ratio. Community-based mobile test stations (cMTS) were used for conducting mass testing and treatment. Baseline (pre) and endline (post) household surveys were done in the control and intervention wards to assess the change in malaria prevalence measured by the interaction term of 'time' (post vs pre) and arm in a logistic model. A secondary analysis also studied the malaria incidence reported at the HFs during the intervention.; Overall the 85 rounds of 1,7-mRCTR conducted in the intervention wards significantly reduced the odds of malaria infection by 66% (adjusted OR 0.34, 95% CI 0.26,0.44, p < 0001) beyond the effect of the standard programmes. Malaria prevalence in the intervention wards declined by 81% (from 26% (95% CI 23.7, 7.8), at baseline to 4.9% (95% CI 4.0, 5.9) at endline). In villages receiving the 1,7-mRCTR, the short-term case ratio decreased by over 15.7% (95% CI - 33, 6) compared to baseline.; The 1,7-mRCTR approach significantly reduced the malaria burden in the areas of high transmission in rural southern Tanzania. This locally tailored approach could accelerate malaria control and elimination efforts. The results provide the impetus for further evaluation of the effectiveness and scaling up of this approach in other high malaria burden countries in Africa, including Tanzania

    Integrative single-cell RNA sequencing and metabolomics decipher the imbalanced lipid-metabolism in maladaptive immune responses during sepsis

    Get PDF
    BackgroundTo identify differentially expressed lipid metabolism-related genes (DE-LMRGs) responsible for immune dysfunction in sepsis.MethodsThe lipid metabolism-related hub genes were screened using machine learning algorithms, and the immune cell infiltration of these hub genes were assessed by CIBERSORT and Single-sample GSEA. Next, the immune function of these hub genes at the single-cell level were validated by comparing multiregional immune landscapes between septic patients (SP) and healthy control (HC). Then, the support vector machine-recursive feature elimination (SVM-RFE) algorithm was conducted to compare the significantly altered metabolites critical to hub genes between SP and HC. Furthermore, the role of the key hub gene was verified in sepsis rats and LPS-induced cardiomyocytes, respectively.ResultsA total of 508 DE-LMRGs were identified between SP and HC, and 5 hub genes relevant to lipid metabolism (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2) were screened. Then, we found an immunosuppressive microenvironment in sepsis. The role of hub genes in immune cells was further confirmed by the single-cell RNA landscape. Moreover, significantly altered metabolites were mainly enriched in lipid metabolism-related signaling pathways and were associated with MAPK14. Finally, inhibiting MAPK14 decreased the levels of inflammatory cytokines and improved the survival and myocardial injury of sepsis.ConclusionThe lipid metabolism-related hub genes may have great potential in prognosis prediction and precise treatment for sepsis patients

    Optimal Design of Wideband Microwave Absorber Consisting of Resistive Meta-Surface Layers

    No full text

    Spatio-temporal clustering of Mountain-type Zoonotic Visceral Leishmaniasis in China between 2015 and 2019.

    No full text
    With several decades of concerted control efforts, visceral leishmaniasis(VL) eradication had almost been achieved in China. However, VL cases continue to be detected in parts of western China recent years. Using data of reported cases, this study aimed to investigate the epidemiology and spatio⁃temporal distribution, of mountain-type zoonotic visceral leishmaniasis (MT-ZVL) in China between the years 2015 and 2019. Epidemiological data pertaining to patients with visceral leishmaniasis (VL) were collected in Gansu, Shaanxi, Sichuan, Shanxi, Henan and Hebei provinces between the years 2015 and 2019. Joinpoint regression analysis was performed to determine changes in the epidemic trend of MT-ZVL within the time period during which data was collected. Spatial autocorrelation of infection was examined using the Global Moran's I statistic wand hotspot analysis was carried out using the Getis-Ord Gi* statistic. Spatio-temporal clustering analysis was conducted using the retrospective space-time permutation flexible spatial scanning statistics. A total of 529 cases of MT-ZVL were detected in the six provinces from which data were collected during the study time period, predominantly in Gansu (55.0%), Shanxi (21.7%), Shaanxi (12.5%) and Sichuan (8.9%) provinces. A decline in VL incidence in China was observed during the study period, whereas an increase in MT-ZVL incidence was observed in the six provinces from which data was obtained (t = 4.87, P < 0.05), with highest incidence in Shanxi province (t = 16.91, P < 0.05). Significant differences in the Moran's I statistic were observed during study time period (P < 0.05), indicating spatial autocorrelation in the spatial distribution of MT-ZVL. Hotspot and spatial autocorrelation analysis revealed clustering of infection cases in the Shaanxi-Shanxi border areas and in east of Shanxi province, where transmission increased rapidly over the study duration, as well as in well know high transmission areas in the south of Gansu province and the north of the Sichuan province. It indicates resurgence of MT-ZVL transmission over the latter three years of the study. Spatial clustering of infection was observed in localized areas, as well as sporadic outbreaks of infection

    Flavanone and flavonoid hydroxylase genes regulate fiber color formation in naturally colored cotton

    No full text
    Using naturally colored cotton (NCC) can eliminate dyeing, printing and industrial processing, and reduce sewage discharge and energy consumption. Proanthocyanidins (PAs), the primary coloration components in brown fibers, are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins. Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′5′-hydroxylase (F3′5′H) are initially committed in the flavonoid biosynthesis pathway to produce common precursors. The three genes were all expressed predominantly in developing fibers of NCCs, and their expression patterns varied temporally and spatially among NCC varieties. In GhF3Hi, GhF3′Hi and GhF3′5′Hi silenced lines of NCC varieties XC20 and ZX1, the expression level of the three genes decreased in developing cotton fiber, negatively correlated with anthocyanidin content and fiber color depth. Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation. GhF3H showed functional differentiation among NCC varieties and GhF3′H acted in the accumulation of anthocyanin in fiber. Compared with GhF3′H, GhF3′5′H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3′5′H silenced lines. These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation

    The Development of a New IFOG-Based 3C Rotational Seismometer

    No full text
    For many years, seismological research mainly focuses on translational ground motions due to the lack of appropriate sensors. However, because of the development of devices based on Sagnac effect, measuring rotational waves directly comes available. In this work, a portable three-component broadband rotational seismometer named RotSensor3C based on open loop interferometric fiber optic gyroscope (IFOG) is designed and demonstrated. Laboratory tests and results are illustrated in detail. The self-noise ranging from 0.005 Hz to 125 Hz is about 1.2×10−7rads−1/Hz, and with the harmonics compensation the scale factor variation over ±250∘/s is lower than 10 ppm (parts per million). The misalignment matrix method is adopted to revise the output rotation rate. In a special near field experiment using the explosive source, the back-azimuths and phase velocity are estimated by the recorded acceleration and rotation rate. All the results prove the practicability of this new rotational sensor
    corecore