1,424 research outputs found

    Density Operator Description of Atomic Ordered Spatial Modes in Cavity QED

    Full text link
    We present a quantum Monte-Carlo simulation for a pumped atom in a strong coupling cavity with dissipation, where two ordered spatial modes are formed for the atomic probability density, with the peaks distributed either only in the odd sites or only in the even ones of the lattice formed by the cavity field. A mixed state density operator model, which describes the coupling between different atomic spatial modes and the corresponding cavity field components, is proposed, which goes beyond the pure state interpretation. We develop a new decomposition treatment to derive the atomic spatial modes as well as the cavity field statistics from the simulation results for the steady state. With this treatment, we also investigate the dynamical process for the probabilities of the atomic spatial modes in the adiabatic limit. According to the analysis of the fitting error between the simulation results and the density operator model, the latter is a good description for the system

    Asymmetric superradiant scattering and abnormal mode amplification induced by atomic density distortion

    Full text link
    The superradiant Rayleigh scattering using a pump laser incident along the short axis of a Bose-Einstein condensate with a density distortion is studied, where the distortion is formed by shocking the condensate utilizing the residual magnetic force after the switching-off of the trapping potential. We find that very small variation of the atomic density distribution would induce remarkable asymmetrically populated scattering modes by the matter-wave superradiance with long time pulse. The optical field in the diluter region of the atomic cloud is more greatly amplified, which is not an ordinary mode amplification with the previous cognition. Our numerical simulations with the density envelop distortion are consistent with the experimental results. This supplies a useful method to reflect the geometric symmetries of the atomic density profile by the superradiance scattering.Comment: 7pages,4 figures, Optical Express 21,(2013)1437

    Synaptic vesicle dynamics in mouse rod bipolar cells.

    Get PDF
    To better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of 7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis

    Atomic spatial coherence with spontaneous emission in a strong coupling cavity

    Full text link
    The role of spontaneous emission in the interaction between a two-level atom and a pumped micro-cavity in the strong coupling regime is discussed in this paper. Especially, using a quantum Monte-Carlo simulation, we investigate atomic spatial coherence. It is found that atomic spontaneous emission destroys the coherence between neighboring lattice sites, while the cavity decay does not. Furthermore, our computation of the spatial coherence function shows that the in-site locality is little affected by the cavity decay, but greatly depends on the cavity pump amplitude.Comment: 4 pages, 5 figures, accepted by PR

    Bis{2-[(E)-benzyl­imino­meth­yl]-4-methyl­phen­olato-κ2 N,O}cobalt(II)

    Get PDF
    In the title complex, [Co(C15H14NO)2], the CoII atom, situated on an inversion centre, is coordinated by two O and two N atoms from two symmetry-related bidentate Schiff base ligands in a slightly distorted square-planar geometry. The two phenolate rings form a dihedral angle of 10.53 (2)°
    • …
    corecore