264 research outputs found

    Herding Effect based Attention for Personalized Time-Sync Video Recommendation

    Full text link
    Time-sync comment (TSC) is a new form of user-interaction review associated with real-time video contents, which contains a user's preferences for videos and therefore well suited as the data source for video recommendations. However, existing review-based recommendation methods ignore the context-dependent (generated by user-interaction), real-time, and time-sensitive properties of TSC data. To bridge the above gaps, in this paper, we use video images and users' TSCs to design an Image-Text Fusion model with a novel Herding Effect Attention mechanism (called ITF-HEA), which can predict users' favorite videos with model-based collaborative filtering. Specifically, in the HEA mechanism, we weight the context information based on the semantic similarities and time intervals between each TSC and its context, thereby considering influences of the herding effect in the model. Experiments show that ITF-HEA is on average 3.78\% higher than the state-of-the-art method upon F1-score in baselines.Comment: ACCEPTED for ORAL presentation at IEEE ICME 201

    Quantum Multicritical Behavior for Coupled Optical Cavities with Driven Laser Fields

    Full text link
    Quantum phase transitions with multicritical points are fascinating phenomena occurring in interacting quantum many-body systems. However, multicritical points predicted by theory have been rarely verified experimentally; finding multicritical points with specific behaviors and realizing their control remains a challenging topic. Here, we propose a system that a quantized light field interacts with a two-level atomic ensemble coupled by microwave fields in optical cavities, which is described by a generalized Dicke model. Multicritical points for the superradiant quantum phase transition are shown to occur. We determine the number and position of these critical points and demonstrate that they can be effectively manipulated through the tuning of system parameters. Particularly, we find that the quantum critical points can evolve into a Lifshitz point if the Rabi frequency of the light field is modulated periodically in time. Remarkably, the texture of atomic pseudo-spins can be used to characterize the quantum critical behaviors of the system. The magnetic orders of the three phases around the Lifshitz point, represented by the atomic pseudo-spins, are similar to those of an axial next-nearest-neighboring Ising model. The results reported here are beneficial for unveiling intriguing physics of quantum phase transitions and pave the way towards to find novel quantum multicritical phenomena based on the generalized Dicke model
    corecore