25 research outputs found

    Optimization of a New Phase Change Material Integrated Photovoltaic/Thermal Panel with The Active Cooling Technique Using Taguchi Method

    Get PDF
    This paper investigates the energy performances of a hybrid system composed of a phase change materials-ventilated Trombe wall (PCMs-VTW) and a photovoltaic/thermal panel integrated with phase change material (PV/T-PCM). Equivalent overall output energy (QE) was proposed for energy performance evaluation regarding different energy forms, diversified conversions and hybrid thermal storages. This study focuses on parameters’ optimization of the PV/T-PCM system and parameters in the PCMs-VTW are kept optimal. Based on the experimentally validated numerical modelling, nine trial experiments have been conducted following Taguchi L9 (34) standard orthogonal array. The higher the better concept was implemented and the optimal combination of operating parameters was thereafter identified by using signal-to-noise (S/N) ratio and Analysis of Variance (ANOVA) method. The results show that QE is highly dependent on the mass flow rate, followed by the diameter of active cooling water pipe. However, the inlet cooling water temperature and the thickness of PCM have limited influence on QE. The optimal combination of each factor was identified as B3A3C2D1 (mass flow rate of 1 kg/s, diameter of water pipe of 0.6 m, inlet cooling water temperature of 15 °C and the thickness of PCM of 20 mm) with the highest QE of 20,700 kWh

    Artificial intelligence in renewable systems for transformation towards intelligent buildings

    No full text
    Carbon-neutrality transition in building sectors requires combinations of renewable systems and artificial intelligence (AI) for robustness, reliability, automation, and flexibility. In this study, a comprehensive review on AI applications in renewable systems, have been conducted, to report the current progress, tendency and challenges. Underlying learning mechanisms of AI-based various applications have been studied, in terms of modelling techniques on solar power forecasting, multi-level stochastic uncertainty analysis, smart controls, fault detection and diagnosis, single and multi-objective optimisations and intelligent buildings. Furthermore, AI techniques in renewable energy utilisations have been clearly reviewed, with respect to solar potential evaluation, multi-level stochastic uncertainty analysis, smart controls, fault detection and diagnosis, single and multi-objective optimisations. Results showed that, compared to physical models, the data-driven models show superiority in modelling simplification and modification, high prediction accuracy, and computational efficiency. In order to improve the system operational robustness under multi-level scenario uncertainty, a generic approach with artificial intelligence was proposed, including nonlinear data-driven model development, uncertainty-based energy performance prediction, stochastic uncertainty and statistical analysis. Furthermore, artificial intelligence can also be applied in renewable systems for security, reliability and stability. This study provides a clear roadmap on historical development, recent advances, cutting-edge techniques and progress, and future challenges of AI applications in renewable energy systems, paving path for developing smart and resilient renewable energy systems for decarbonization in buildings

    A cross-scale ‘material-component-system’ framework for transition towards zero-carbon buildings and districts with low, medium and high-temperature phase change materials

    No full text
    Transition towards a carbon-neutral district energy community calls for carbon elimination and offsetting strategies, and phase change materials (PCMs) with substantial potential latent energy density can contribute significantly to carbon neutrality through both carbon-positive (like PCM-based thermal control in solar PVs) and carbon-negative strategies (like waste-to-energy recovery). However, roadmap for PCMs’ application in carbon-neutral transition is ambiguous in the current academia, and a state-of-the-art overview on latent thermal storage is necessary. In this study, a comprehensive review was conducted on cutting-edge technologies for carbon-neutral transition with latent thermal storages. Both carbon-positive and carbon-negative strategies in the operational stage are reviewed. Carbon-positive solution mainly focuses on energy-efficient buildings, through a series of passive, active, and smart control strategies with artificial intelligence. Passive strategies, to enhance thermal inertia and thermal storage of building envelopes, mainly include free cooling, solar chimney, solar façade, and Trombe walls. Active strategies mainly include mechanical ventilations, active water pipe-embedded radiative cooling, and geothermal system integration. The ultimate target is to minimise building energy demands, with improved utilisation efficiency on natural heating (e.g., concentrated solar thermal energy, geothermal heating, and solar-driven ventilative heating) and cooling resources (e.g., ventilative cooling, geothermal cooling, and sky radiative cooling). As one of the most critical solutions to offset the released carbon emission, carbon-negative strategies with PCMs mainly include cleaner power production and waste heat recovery. Main functions of PCMs include energy efficiency enhancement on cleaner power production, steady steam production, steady heat flux via the latent storage capacity, and pre-heat purpose on waste heat recovery. A thermal energy interaction network with transportation is formulated with PCMs’ recovering heat from internal combustion engines and spatiotemporal energy sharing, to provide frontier research guidelines. Future studies are recommended to spotlight standard testing procedure and database, benchmarks for suitable PCMs selection, seasonal cascaded energy storage, nanofluid-based heat transfer enhancement in PCMs, anti-corrosion, compatibility, thermochemical stability, and economic feasibility of PCMs. This study provides a clear roadmap on developing PCMs for transition towards a carbon-neutral district energy community, together with applications, prospects, and challenges, paving the path for combined efforts from chemical materials synthesis and applications.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Design & Construction Managemen

    Energy integration and interaction between buildings and vehicles: a state-of-the-art review

    No full text
    \u3cp\u3eClean power production, buildings, and transportation are key areas for climate change mitigation. Their tighter integration decreases not only the emissions, but also the energy consumption of buildings and transportation. Energy integration and interactions between buildings and vehicles are dependent on the type of building, vehicle, and renewable energy system, as well as the local climatic conditions. The current academic literature does not provide a systematic analysis of this topic. In the study, different energy management systems and advanced energy control strategies have been formulated to study such interactions both from a building and a vehicle perspective. Furthermore, technical solutions have been systematically reviewed in terms of the enhancement of energy interaction capabilities, in particular from the standpoint of renewable energy systems, energy/fuel charging facilities, and control strategies. Assessment criteria employed in the review of solutions include grid interaction, annual operational cost, annual net CO \u3csub\u3e2\u3c/sub\u3e emissions, and annual matching capability. The literature review identifies several technical challenges that need further consideration such as capacity expansion and power fluctuation of the electric grid, low efficiency of heat recovered from electricity generation, and depreciation of vehicles. The future outlook and potential for the energy interaction networks between buildings and vehicles have also been presented. \u3c/p\u3

    Heuristic battery-protective strategy for energy management of an interactive renewables–buildings–vehicles energy sharing network with high energy flexibility

    Get PDF
    \u3cp\u3eInteractive energy sharing networks with centralised coordinated energy management between buildings and vehicles can increase eco-economics viability, while tracking battery degradations is critical to the assessment of techno-economic performance and energy flexibility. In this study, a mathematical model was developed to characterise the cycling aging of electrochemical battery storage in multidirectional interactions within interactive renewables–buildings–vehicles energy sharing networks, with classification of the cycle life into two groups (slow degradation zone and acceleration zone). An advanced battery-protective energy control strategy was developed that fully utilises inherent battery depreciation characteristics for flexible energy management. Multi-criteria were investigated, including equivalent CO\u3csub\u3e2\u3c/sub\u3e emissions, import cost, energy flexibility, and the equivalent relative capacity of battery storage. With respect to the advanced battery-protective energy control strategy, the grid-battery charging process can decrease the depth of discharge and thus slow down the battery depreciation rate, but it will also lead to an increase in the number of cycles along with cycling aging. The research results show that, in terms of cycling aging, the single-variable mathematical fitting method with piecewise fitting curves (correlation coefficient of 0.9807) is more accurate than the bivariate mathematical fitting method (correlation coefficient of 0.9206). In addition, the proposed battery-protective control strategy can contribute to multi-criteria improvement. Furthermore, robust solutions for relative capacity improvement have been proposed with a lower limitation of fractional state of charge at 0.7. This study formulated a synergistic interactive energy framework for flexible district energy management, involving complementary solar-wind renewable systems, static and mobile battery storage, diversified energy demands in district buildings, and an advanced battery-protective energy management strategy, which can provide technical guidance to designers, operators, and stakeholders in terms of flexible participation in smart and resilient district energy networks.\u3c/p\u3

    Application of abandoned wells integrated with renewables

    No full text
    The large thermal potentials with geothermal gradient of abandoned wells provide the possibility and opportunity for carbon-neutrality transition of district heating systems, whereas energy harvesting from abandoned geothermal wells is full of challenges, due to the considerable initial investment in economic cost, system performance degradation, and so on. In this chapter, a systematic and comprehensive review on the application techniques of abandoned wells is presented, in terms of advanced thermal/power conversions, renewable integrations for district heating, and strategies for performance enhancement. Discussions on real applications have been conducted and future prospects presented, from perspectives of lifetime system performance, techno-economic feasibility analysis, and potential assessment of abandoned wells for carbon-neutrality transition. The results of this chapter can provide preliminary knowledge and cutting-edge technologies on renewable integrations with abandoned wells, so as to demonstrate techno-economic-environmental potentials of abandoned wells and contributions toward carbon-neutrality transition.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Design & Construction Managemen

    Energy integration and interaction between buildings and vehicles

    No full text
    Clean power production, buildings, and transportation are key areas for climate change mitigation. Their tighter integration decreases not only the emissions, but also the energy consumption of buildings and transportation. Energy integration and interactions between buildings and vehicles are dependent on the type of building, vehicle, and renewable energy system, as well as the local climatic conditions. The current academic literature does not provide a systematic analysis of this topic. In the study, different energy management systems and advanced energy control strategies have been formulated to study such interactions both from a building and a vehicle perspective. Furthermore, technical solutions have been systematically reviewed in terms of the enhancement of energy interaction capabilities, in particular from the standpoint of renewable energy systems, energy/fuel charging facilities, and control strategies. Assessment criteria employed in the review of solutions include grid interaction, annual operational cost, annual net CO2 emissions, and annual matching capability. The literature review identifies several technical challenges that need further consideration such as capacity expansion and power fluctuation of the electric grid, low efficiency of heat recovered from electricity generation, and depreciation of vehicles. The future outlook and potential for the energy interaction networks between buildings and vehicles have also been presented.Peer reviewe

    Energy integration and interaction between buildings and vehicles: a state-of-the-art review

    Get PDF
    Clean power production, buildings, and transportation are key areas for climate change mitigation. Their tighter integration decreases not only the emissions, but also the energy consumption of buildings and transportation. Energy integration and interactions between buildings and vehicles are dependent on the type of building, vehicle, and renewable energy system, as well as the local climatic conditions. The current academic literature does not provide a systematic analysis of this topic. In the study, different energy management systems and advanced energy control strategies have been formulated to study such interactions both from a building and a vehicle perspective. Furthermore, technical solutions have been systematically reviewed in terms of the enhancement of energy interaction capabilities, in particular from the standpoint of renewable energy systems, energy/fuel charging facilities, and control strategies. Assessment criteria employed in the review of solutions include grid interaction, annual operational cost, annual net CO 2 emissions, and annual matching capability. The literature review identifies several technical challenges that need further consideration such as capacity expansion and power fluctuation of the electric grid, low efficiency of heat recovered from electricity generation, and depreciation of vehicles. The future outlook and potential for the energy interaction networks between buildings and vehicles have also been presented
    corecore