5,007 research outputs found

    Temporal and spatial stability of Anopheles gambiae larval habitat distribution in Western Kenya highlands.

    Get PDF
    BACKGROUND: Localized mosquito larval habitat management and the use of larvicides have been proposed as important control tools in integrated malaria vector management programs. In order to optimize the utility of these tools, detailed knowledge of the spatial distribution patterns of mosquito larval habitats is crucial. However, the spatial and temporal changes of habitat distribution patterns under different climatic conditions are rarely quantified and their implications to larval control are unknown. RESULTS: Using larval habitat data collected in western Kenya highlands during both dry and rainy seasons of 2003-2005, this study analyzed the seasonal and inter-annual changes in the spatial patterns in mosquito larval habitat distributions. We found that the spatial patterns of larval habitats had significant temporal variability both seasonally and inter-annually. CONCLUSIONS: The pattern of larval habitats is extremely important to the epidemiology of malaria because it results in spatial heterogeneity in the adult mosquito population and, subsequently, the spatial distribution of clinical malaria cases. Results from this study suggest that larval habitat management activities need to consider the dynamic nature of malaria vector habitats

    IB-UQ: Information bottleneck based uncertainty quantification for neural function regression and neural operator learning

    Full text link
    We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks, including deep neural network (DNN) regression and neural operator learning (DeepONet). Specifically, we incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data belonging to the region where training data is located, and utilize a Gaussian decoder to predict means and variances of outputs conditional on representation variables. Furthermore, we propose a data augmentation based information bottleneck objective which can enhance the quantification quality of the extrapolation uncertainty, and the encoder and decoder can be both trained by minimizing a tractable variational bound of the objective. In comparison to uncertainty quantification (UQ) methods for scientific learning tasks that rely on Bayesian neural networks with Hamiltonian Monte Carlo posterior estimators, the model we propose is computationally efficient, particularly when dealing with large-scale data sets. The effectiveness of the IB-UQ model has been demonstrated through several representative examples, such as regression for discontinuous functions, real-world data set regression, learning nonlinear operators for partial differential equations, and a large-scale climate model. The experimental results indicate that the IB-UQ model can handle noisy data, generate robust predictions, and provide confident uncertainty evaluation for out-of-distribution data.Comment: 27 pages, 22figure
    • …
    corecore