20 research outputs found

    Learning to Compare for Better Training and Evaluation of Open Domain Natural Language Generation Models

    Full text link
    Automated evaluation of open domain natural language generation (NLG) models remains a challenge and widely used metrics such as BLEU and Perplexity can be misleading in some cases. In our paper, we propose to evaluate natural language generation models by learning to compare a pair of generated sentences by fine-tuning BERT, which has been shown to have good natural language understanding ability. We also propose to evaluate the model-level quality of NLG models with sample-level comparison results with skill rating system. While able to be trained in a fully self-supervised fashion, our model can be further fine-tuned with a little amount of human preference annotation to better imitate human judgment. In addition to evaluating trained models, we propose to apply our model as a performance indicator during training for better hyperparameter tuning and early-stopping. We evaluate our approach on both story generation and chit-chat dialogue response generation. Experimental results show that our model correlates better with human preference compared with previous automated evaluation approaches. Training with the proposed metric yields better performance in human evaluation, which further demonstrates the effectiveness of the proposed model.Comment: AAAI 202

    Modular Transformers: Compressing Transformers into Modularized Layers for Flexible Efficient Inference

    Full text link
    Pre-trained Transformer models like T5 and BART have advanced the state of the art on a wide range of text generation tasks. Compressing these models into smaller ones has become critically important for practical use. Common neural network compression techniques such as knowledge distillation or quantization are limited to static compression where the compression ratio is fixed. In this paper, we introduce Modular Transformers, a modularized encoder-decoder framework for flexible sequence-to-sequence model compression. Modular Transformers train modularized layers that have the same function of two or more consecutive layers in the original model via module replacing and knowledge distillation. After training, the modularized layers can be flexibly assembled into sequence-to-sequence models that meet different performance-efficiency trade-offs. Experimental results show that after a single training phase, by simply varying the assembling strategy, Modular Transformers can achieve flexible compression ratios from 1.1x to 6x with little to moderate relative performance drop.Comment: ACL 2023 Finding

    Commonsense Knowledge Transfer for Pre-trained Language Models

    Full text link
    Despite serving as the foundation models for a wide range of NLP benchmarks, pre-trained language models have shown limited capabilities of acquiring implicit commonsense knowledge from self-supervision alone, compared to learning linguistic and factual knowledge that appear more explicitly in the surface patterns in text. In this work, we introduce commonsense knowledge transfer, a framework to transfer the commonsense knowledge stored in a neural commonsense knowledge model to a general-purpose pre-trained language model. It first exploits general texts to form queries for extracting commonsense knowledge from the neural commonsense knowledge model and then refines the language model with two self-supervised objectives: commonsense mask infilling and commonsense relation prediction, which align human language with the underlying commonsense knowledge. Empirical results show that our approach consistently improves the model's performance on downstream tasks that require commonsense reasoning. Moreover, we find that the improvement is more significant in the few-shot setting. This suggests that our approach helps language models better transfer to downstream tasks without extensive supervision by injecting commonsense knowledge into their parameters.Comment: ACL 2023 Finding

    To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis

    Full text link
    Recent research has highlighted the importance of dataset size in scaling language models. However, large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs. To further enhance LLMs, a straightforward approach is to repeat the pre-training data for additional epochs. In this study, we empirically investigate three key aspects under this approach. First, we explore the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting, leading to multi-epoch degradation. Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives, while less influential factors consist of dataset quality and model FLOPs. Finally, we explore whether widely used regularization can alleviate multi-epoch degradation. Most regularization techniques do not yield significant improvements, except for dropout, which demonstrates remarkable effectiveness but requires careful tuning when scaling up the model size. Additionally, we discover that leveraging mixture-of-experts (MoE) enables cost-effective and efficient hyper-parameter tuning for computationally intensive dense LLMs with comparable trainable parameters, potentially impacting efficient LLM development on a broader scale.Comment: Accepted at NeurIPS 202

    X2^2-VLM: All-In-One Pre-trained Model For Vision-Language Tasks

    Full text link
    Vision language pre-training aims to learn alignments between vision and language from a large amount of data. We proposed multi-grained vision language pre-training, a unified approach which can learn vision language alignments in multiple granularity. This paper advances the proposed method by unifying image and video encoding in one model and scaling up the model with large-scale data. We present X2^2-VLM, a pre-trained VLM with a modular architecture for both image-text tasks and video-text tasks. Experiment results show that X2^2-VLM performs the best on base and large scale for both image-text and video-text tasks, making a good trade-off between performance and model scale. Moreover, we show that the modular design of X2^2-VLM results in high transferability for X2^2-VLM to be utilized in any language or domain. For example, by simply replacing the text encoder with XLM-R, X2^2-VLM outperforms state-of-the-art multilingual multi-modal pre-trained models without any multilingual pre-training. The code and pre-trained models will be available at github.com/zengyan-97/X2-VLM.Comment: 21 pages, 8 figure
    corecore