90 research outputs found

    Erasure Coding Optimization for Data Storage: Acceleration Techniques and Delayed Parities Generation

    Get PDF
    Various techniques have been proposed in the literature to improve erasure code computation efficiency, including optimizing bitmatrix design and computation schedule, common XOR operation reduction, caching management techniques, and vectorization techniques. These techniques were largely proposed individually, and in this work, we seek to use them jointly. To accomplish this task, these techniques need to be thoroughly evaluated individually, and their relation better understood. Building on extensive testing, we develop methods to systematically optimize the computation chain together with the underlying bitmatrix. This led to a simple design approach of optimizing the bitmatrix by minimizing a weighted computation cost function, and also a straightforward coding procedure: follow a computation schedule produced from the optimized bitmatrix to apply XOR-level vectorization. This procedure provides better performances than most existing techniques (e.g., those used in ISA-L and Jerasure libraries), and sometimes can even compete against well-known but less general codes such as EVENODD, RDP, and STAR codes. One particularly important observation is that vectorizing the XOR operations is a better choice than directly vectorizing finite field operations, not only because of the flexibility in choosing finite field size and the better encoding throughput, but also its minimal migration efforts onto newer CPUs. A delayed parity generation technique for maximum distance separable (MDS) storage codes is proposed as well, for two possible applications: the first is to improve the write-speed during data intake where only a subset of the parities are initially produced and stored into the system, and the rest can be produced from the stored data during a later time of lower system load; the second is to provide better adaptivity, where a lower number of parities can be chosen initially in a storage system, and more parities can be produced when the existing ones are not sufficient to guarantee the needed reliability or performance. In both applications, it is important to reduce the data access as much as possible during the delayed parity generation procedure. For this purpose, we first identify the fundamental limit for delayed parity generation through a connection to the well-known multicast network coding problem, then provide an explicit and low-complexity code transformation that is applicable on any MDS codes to obtain optimal codes. The problem we consider is closely related to the regenerating code problem, however the proposed codes are much simpler and have a much smaller subpacketization factor than regenerating codes, and thus our result in fact shows that blindly adopting regenerating codes in these two settings is unnecessary and wasteful. Moreover, two aspects of this approach is addressed. The first is to optimize the underlying coding matrix, and the second is to understand its behavior in a system setting. For the former, we generalize the existing approach by allowing more flexibility in the code design, and then optimize the underlying coding matrix in the familiar bitmatrix-based coding framework. For the latter, we construct a prototype system, and conduct tests on a local storage network and on two virtual machine-based setups. In both cases, the results confirm the benefit of delayed parity generation when the system bottleneck is in the communication bandwidth instead of the computation

    Mapping the potential distribution of major tick species in China

    Get PDF
    Ticks are known as the vectors of various zoonotic diseases such as Lyme borreliosis and tick-borne encephalitis. Though their occurrences are increasingly reported in some parts of China, our understanding of the pattern and determinants of ticksā€™ potential distribution over the country remain limited. In this study, we took advantage of the recently compiled spatial dataset of distribution and diversity of ticks in China, analyzed the environmental determinants of ten frequently reported tick species and mapped the spatial distribution of these species over the country using the MaxEnt model. We found that presence of urban fabric, cropland, and forest in a place are key determents of tick occurrence, suggesting ticks were likely inhabited close to where people live. Besides, precipitation in the driest month was found to have a relatively high contribution in mapping tick distribution. The model projected that theses ticks could be widely distributed in the Northwest, Central North, Northeast, and South China. Our results added new evidence on the potential distribution of a variety of major tick species in China and pinpointed areas with a high potential risk of tick bites and tick-borne diseases for raising public health awareness and prevention response

    Wide-range continuous tuning of the thermal conductivity of La0.5Sr0.5CoO3āˆ’Ī“\rm La_{0.5}Sr_{0.5}CoO_{3-\delta} films via room-temperature ion-gel gating

    Full text link
    Solid-state control of the thermal conductivity of materials is of exceptional interest for novel devices such as thermal diodes and switches. Here, we demonstrate the ability to continuously tune the thermal conductivity of nanoscale films of La0.5Sr0.5CoO3āˆ’Ī“\rm La_{0.5}Sr_{0.5}CoO_{3-\delta} (LSCO) by a factor of over 5, via a room-temperature electrolyte-gate-induced non-volatile topotactic phase transformation from perovskite (with Ī“ā‰ˆ0.1\delta \approx 0.1) to an oxygen-vacancy-ordered brownmillerite phase (with Ī“=0.5\delta=0.5), accompanied by a metal-insulator transition. Combining time-domain thermoreflectance and electronic transport measurements, model analyses based on molecular dynamics and Boltzmann transport, and structural characterization by X-ray diffraction, we uncover and deconvolve the effects of these transitions on heat carriers, including electrons and lattice vibrations. The wide-range continuous tunability of LSCO thermal conductivity enabled by low-voltage (below 4 V) room-temperature electrolyte gating opens the door to non-volatile dynamic control of thermal transport in perovskite-based functional materials, for thermal regulation and management in device applications

    High-Dielectric PVP@PANI/PDMS Composites Fabricated via an Electric Field-Assisted Approach

    Get PDF
    Polymer-based composite films with multiple properties, such as low dielectric loss tangent, high dielectric constant, and low cost are promising materials in the area of electronics and electric industries. In this study, flexible dielectric films were fabricated via an electric field-assisted method. Polyaniline (PANI) was modified by polyvinylpyrrolidone (PVP) to form a coreā€“shell structure to serve as functional particles and silicone rubber polydimethylsiloxane (PDMS) served as the matrix. The dielectric constant of the composites prepared under electric fields was improved by the micro-structures formed by external electric fields. With the addition of 2.5 wt% PVP@PANI, the dielectric constant could be significantly enhanced, up to 23; the dielectric loss tangent is only 1, which is lower than that of the aligned PANI samples. This new processing technology provides important insights for aligning fillers in polymer matrix to form composites with enhanced dielectric properties

    Climate changes reconstructed from a glacial lake in High Central Asiaover the past two millennia

    Get PDF
    Climatic changes in Arid Central Asia (ACA) over the past two millennia have been widely concerned. However, less attention has been paid to those in the High Central Asia (HCA), where the Asian water tower nurtures the numerous oases by glacier and/or snow melt. Here, we present a new reconstruction of the temperature and precipitation change over the past two millennia based on grain size of a well-dated glacial lake sediment core in the central of southern Tianshan Mountains. The results show that the glacial lake catchment has experienced cold-wet climate conditions during the Dark Age Cold Period (&sim;300&ndash;600 AD; DACP) and the Little Ice Age (&sim;1300&ndash;1870 AD; LIA), whereas warm-dry conditions during the Medieval Warm Period (&sim;700&ndash;1270 AD; MWP). Integration of our results with those of previously published lake sediment records, stalagmite &delta;18O records, ice core net accumulation rates, tree-ring based temperature reconstructions, and mountain glacier activities suggest that there has a broadly similar hydroclimatic pattern over the HCA areas on centennial time scale during the past two millennia. Comparison between hydroclimatic pattern of the HCA and that of the ACA areas suggests a prevailing &#39;warm-dry and cold-wet&#39; hydroclimatic pattern over the whole westerlies-dominated central Asia areas during the past two millennia. We argue that the position and intensity of the westerlies, which are closely related to the phase of the North Atlantic Oscillation (NAO), and the strength of the Siberian High pressure (SH), could have jointly modulated the late Holocene central Asia hydroclimatic changes.<br /

    The Sihailongwan Maar Lake, northeastern China as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series

    Get PDF
    Sihailongwan Maar Lake, located in Northeast China, is a candidate Global boundary Stratotype Section and Point (GSSP) for demarcation of the Anthropocene. The lakeā€™s varved sediments are formed by alternating allogenic atmospheric inputs and authigenic lake processes and store a record of environmental and human impacts at a continental-global scale. Varve counting and radiometric dating provided a precise annual-resolution sediment chronology for the site. Time series records of radioactive (239,240Pu, 129I and soot 14C), chemical (spheroidal carbonaceous particles, polycyclic aromatic hydrocarbons, soot, heavy metals, Ī“13C, etc), physical (magnetic susceptibility and grayscale) and biological (environmental DNA) indicators all show rapid changes in the mid-20th century, coincident with clear lithological changes of the sediments. Statistical analyses of these proxies show a tipping point in 1954 CE. 239,240Pu activities follow a typical unimodal globally-distributed profile, and are proposed as the primary marker for the Anthropocene. A rapid increase in 239,240Pu activities at 88ā€‰mm depth in core SHLW21-Fr-13 (1953 CE) is synchronous with rapid changes of other anthropogenic proxies and the Great Acceleration, marking the onset of the Anthropocene. The results indicate that Sihailongwan Maar Lake is an ideal site for the Anthropocene GSSP

    Rapidly progressive interstitial lung disease risk prediction in anti-MDA5 positive dermatomyositis: the CROSS model

    Get PDF
    BackgroundThe prognosis of anti-melanoma differentiation-associated gene 5 positive dermatomyositis (anti-MDA5+DM) is poor and heterogeneous. Rapidly progressive interstitial lung disease (RP-ILD) is these patientsā€™ leading cause of death. We sought to develop prediction models for RP-ILD risk in anti-MDA5+DM patients.MethodsPatients with anti-MDA5+DM were enrolled in two cohorts: 170 patients from the southern region of Jiangsu province (discovery cohort) and 85 patients from the northern region of Jiangsu province (validation cohort). Cox proportional hazards models were used to identify risk factors of RP-ILD. RP-ILD risk prediction models were developed and validated by testing every independent prognostic risk factor derived from the Cox model.ResultsThere are no significant differences in baseline clinical parameters and prognosis between discovery and validation cohorts. Among all 255 anti-MDA5+DM patients, with a median follow-up of 12 months, the incidence of RP-ILD was 36.86%. Using the discovery cohort, four variables were included in the final risk prediction model for RP-ILD: C-reactive protein (CRP) levels, anti-Ro52 antibody positivity, short disease duration, and male sex. A point scoring system was used to classify anti-MDA5+DM patients into moderate, high, and very high risk of RP-ILD. After one-year follow-up, the incidence of RP-ILD in the very high risk group was 71.3% and 85.71%, significantly higher than those in the high-risk group (35.19%, 41.69%) and moderate-risk group (9.54%, 6.67%) in both cohorts.ConclusionsThe CROSS model is an easy-to-use prediction classification system for RP-ILD risk in anti-MDA5+DM patients. It has great application prospect in disease management

    Erasure Coding Optimization for Data Storage: Acceleration Techniques and Delayed Parities Generation

    Get PDF
    Various techniques have been proposed in the literature to improve erasure code computation efficiency, including optimizing bitmatrix design and computation schedule, common XOR operation reduction, caching management techniques, and vectorization techniques. These techniques were largely proposed individually, and in this work, we seek to use them jointly. To accomplish this task, these techniques need to be thoroughly evaluated individually, and their relation better understood. Building on extensive testing, we develop methods to systematically optimize the computation chain together with the underlying bitmatrix. This led to a simple design approach of optimizing the bitmatrix by minimizing a weighted computation cost function, and also a straightforward coding procedure: follow a computation schedule produced from the optimized bitmatrix to apply XOR-level vectorization. This procedure provides better performances than most existing techniques (e.g., those used in ISA-L and Jerasure libraries), and sometimes can even compete against well-known but less general codes such as EVENODD, RDP, and STAR codes. One particularly important observation is that vectorizing the XOR operations is a better choice than directly vectorizing finite field operations, not only because of the flexibility in choosing finite field size and the better encoding throughput, but also its minimal migration efforts onto newer CPUs. A delayed parity generation technique for maximum distance separable (MDS) storage codes is proposed as well, for two possible applications: the first is to improve the write-speed during data intake where only a subset of the parities are initially produced and stored into the system, and the rest can be produced from the stored data during a later time of lower system load; the second is to provide better adaptivity, where a lower number of parities can be chosen initially in a storage system, and more parities can be produced when the existing ones are not sufficient to guarantee the needed reliability or performance. In both applications, it is important to reduce the data access as much as possible during the delayed parity generation procedure. For this purpose, we first identify the fundamental limit for delayed parity generation through a connection to the well-known multicast network coding problem, then provide an explicit and low-complexity code transformation that is applicable on any MDS codes to obtain optimal codes. The problem we consider is closely related to the regenerating code problem, however the proposed codes are much simpler and have a much smaller subpacketization factor than regenerating codes, and thus our result in fact shows that blindly adopting regenerating codes in these two settings is unnecessary and wasteful. Moreover, two aspects of this approach is addressed. The first is to optimize the underlying coding matrix, and the second is to understand its behavior in a system setting. For the former, we generalize the existing approach by allowing more flexibility in the code design, and then optimize the underlying coding matrix in the familiar bitmatrix-based coding framework. For the latter, we construct a prototype system, and conduct tests on a local storage network and on two virtual machine-based setups. In both cases, the results confirm the benefit of delayed parity generation when the system bottleneck is in the communication bandwidth instead of the computation

    Tianli Zu: Missing

    No full text
    Missing is an exhibition by award winning multimedia artist, Tianli Zu. It consists of large scale paper-cuts, paintings, site-specific installations and cinematic projection to depict absence, power and transcendence. It is an intriguing exploration of shadow matters, reflecting memory, time and space within the Margaret Whitlam Galleries, Female Orphan School, Western Sydney University, Parramatta Campus. Zu invites viewers to experience all aspects of the concept of "missing": physical, psychological and metaphorical. The exhibition items include: Spirit of the Coolabah tree (watercolour, hand cut paper and installation with LED lights, 210x210cm), The Cascade symphony No.2 (acrylic on linen, 198x152 cm), Happening (ink, hand cut paper and site-specific installation), Red drawings (watercolour and hand cut paper, 64x46 cm), Composition (video projection installation, music composed and produced by Andrew Zhou, 22:23 mins.), and Not for sale! (ink, hand cut paper and site specific light projection installation, various sizes)
    • ā€¦
    corecore