180 research outputs found

    Robust Audio Anti-Spoofing with Fusion-Reconstruction Learning on Multi-Order Spectrograms

    Full text link
    Robust audio anti-spoofing has been increasingly challenging due to the recent advancements on deepfake techniques. While spectrograms have demonstrated their capability for anti-spoofing, complementary information presented in multi-order spectral patterns have not been well explored, which limits their effectiveness for varying spoofing attacks. Therefore, we propose a novel deep learning method with a spectral fusion-reconstruction strategy, namely S2pecNet, to utilise multi-order spectral patterns for robust audio anti-spoofing representations. Specifically, spectral patterns up to second-order are fused in a coarse-to-fine manner and two branches are designed for the fine-level fusion from the spectral and temporal contexts. A reconstruction from the fused representation to the input spectrograms further reduces the potential fused information loss. Our method achieved the state-of-the-art performance with an EER of 0.77% on a widely used dataset: ASVspoof2019 LA Challenge

    Blocking interaction between SHP2 and PD‐1 denotes a novel opportunity for developing PD‐1 inhibitors

    Get PDF
    Small molecular PD‐1 inhibitors are lacking in current immuno‐oncology clinic. PD‐1/PD‐L1 antibody inhibitors currently approved for clinical usage block interaction between PD‐L1 and PD‐1 to enhance cytotoxicity of CD8+ cytotoxic T lymphocyte (CTL). Whether other steps along the PD‐1 signaling pathway can be targeted remains to be determined. Here, we report that methylene blue (MB), an FDA‐approved chemical for treating methemoglobinemia, potently inhibits PD‐1 signaling. MB enhances the cytotoxicity, activation, cell proliferation, and cytokine‐secreting activity of CTL inhibited by PD‐1. Mechanistically, MB blocks interaction between Y248‐phosphorylated immunoreceptor tyrosine‐based switch motif (ITSM) of human PD‐1 and SHP2. MB enables activated CTL to shrink PD‐L1 expressing tumor allografts and autochthonous lung cancers in a transgenic mouse model. MB also effectively counteracts the PD‐1 signaling on human T cells isolated from peripheral blood of healthy donors. Thus, we identify an FDA‐approved chemical capable of potently inhibiting the function of PD‐1. Equally important, our work sheds light on a novel strategy to develop inhibitors targeting PD‐1 signaling axis

    Contributions of Flexible-Arch Configurations in Shimenzi Arch Dam: New Evidence from Field Measurements

    Get PDF
    This paper presents a retrospective investigation into the performance of a new type of flexible-arch configurations in Shimenzi arch dam based on the past ten-year-long field measurements. The flexible-arch configurations are mainly comprised of artificial short joints at the middle downstream surface and a middle contraction joint with hinged well and enlarged arch ends with bending joints. Fundamental design considerations of these components are provided, and their contributions to the performance of Shimenzi arch dam are discussed in detail using the monitoring data from joint meters, strain gauges, and thermometers. Some elementary numerical studies have been conducted on a typical arch structure with different arrangements of artificial joints. Both the field data and numerical results prove well the effectiveness of the purposely built short joints and the middle contraction joint on the relaxation of tensile stress mobilization. Field survey data also clearly demonstrate the significance of the hinged well at the upstream side of the middle joint for a continuous arch force transfer

    Depositing boron on Cu(111): Borophene or boride?

    Full text link
    Large-area single-crystal surface structures were successfully prepared on Cu(111) substrate with boron deposition, which is critical for prospective applications. However, the proposed borophene structures do not match the scanning tunneling microscopy (STM) results very well, while the proposed copper boride is at odds with the traditional knowledge that ordered copper-rich borides normally do not exist due to small difference in electronegativity and large difference in atomic size. To clarify the controversy and elucidate the formation mechanism of the unexpected copper boride, we conducted systematic STM, X-ray photoelectron spectroscopy and angle-resolved photoemission spectroscopy investigations, confirming the synthesis of two-dimensional copper boride rather than borophene on Cu(111) after boron deposition under ultrahigh vacuum. First-principles calculations with defective surface models further indicate that boron atoms tend to react with Cu atoms near terrace edges or defects, which in turn shapes the intermediate structures of copper boride and leads to the formation of stable Cu-B monolayer via large-scale surface reconstruction eventually.Comment: 15 pages, 4 figure

    New early oligocene zircon U-Pb dates for the ‘Miocene’ Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment

    Get PDF
    The sedimentary basins of Yunnan, Southwest China, record detailed histories of Cenozoic paleoenvironmental change. They track regional tectonic and palaeobiological evolution, both of which are critically important for the development of modern floral diversity in southwestern China and throughout Asia more generally. However, to be useful, the sedimentary archives within the basins have to be placed within a well-constrained timeframe independent of biostratigraphy. Using high resolution U-Pb dating, we redefine the age of fossil-bearing strata in the Wenshan Basin. Regarded as Miocene for the last half century, these basin sediments encompass 30±2 and 32±1 Ma early Oligocene tuffaceous horizons, thus indicating a significantly greater antiquity than previously recognized. Together with other regional age revisions our result points to widespread Yunnan basin and orographic development as largely having taken place by the end Paleogene. This age revision provides an important new perspective on the preserved biotas and their evolution in Yunnan, and especially our understanding of the origin of Asian biodiversity which, regionally, had a near-modern composition by the early Oligocene. Crucially, this revised age evidences late Eocene-early Oligocene regional tectonism, pointing to the rise of eastern Tibet and the Hengduan Mountains before the growth of the Himalaya, and that Asia's high plant diversity has a Paleogene origin

    New early oligocene zircon U-Pb dates for the ‘Miocene’ Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment

    Get PDF
    The sedimentary basins of Yunnan, Southwest China, record detailed histories of Cenozoic paleoenvironmental change. They track regional tectonic and palaeobiological evolution, both of which are critically important for the development of modern floral diversity in southwestern China and throughout Asia more generally. However, to be useful, the sedimentary archives within the basins have to be placed within a well-constrained timeframe independent of biostratigraphy. Using high resolution U-Pb dating, we redefine the age of fossil-bearing strata in the Wenshan Basin. Regarded as Miocene for the last half century, these basin sediments encompass 30±2 and 32±1 Ma early Oligocene tuffaceous horizons, thus indicating a significantly greater antiquity than previously recognized. Together with other regional age revisions our result points to widespread Yunnan basin and orographic development as largely having taken place by the end Paleogene. This age revision provides an important new perspective on the preserved biotas and their evolution in Yunnan, and especially our understanding of the origin of Asian biodiversity which, regionally, had a near-modern composition by the early Oligocene. Crucially, this revised age evidences late Eocene-early Oligocene regional tectonism, pointing to the rise of eastern Tibet and the Hengduan Mountains before the growth of the Himalaya, and that Asia's high plant diversity has a Paleogene origin

    Transcranial Magnetic Stimulation Over the Right Posterior Superior Temporal Sulcus Promotes the Feature Discrimination Processing

    Get PDF
    Attention is the dynamic process of allocating limited resources to the information that is most relevant to our goals. Accumulating studies have demonstrated the crucial role of frontal and parietal areas in attention. However, the effect of posterior superior temporal sulcus (pSTS) in attention is still unclear. To address this question, in this study, we measured transcranial magnetic stimulation (TMS)-induced event-related potentials (ERPs) to determine the extent of involvement of the right pSTS in attentional processing. We hypothesized that TMS would enhance the activation of the right pSTS during feature discrimination processing. We recruited 21 healthy subjects who performed the dual-feature delayed matching task while undergoing single-pulse sham or real TMS to the right pSTS 300 ms before the second stimulus onset. The results showed that the response time was reduced by real TMS of the pSTS as compared to sham stimulation. N270 amplitude was reduced during conflict processing, and the time-varying network analysis revealed increased connectivity between the frontal lobe and temporo-parietal and occipital regions. Thus, single-pulse TMS of the right pSTS enhances feature discrimination processing and task performance by reducing N270 amplitude and increasing connections between the frontal pole and temporo-parietal and occipital regions. These findings provide evidence that the right pSTS facilitates feature discrimination by accelerating the formation of a dynamic network

    The succession of rhizosphere microbial community in the continuous cropping soil of tobacco

    Get PDF
    Introduction: Flue-cured tobacco is an important economic crop that is not tolerant of continuous cropping and can be influenced by planting soil conditions including rhizosphere microbial communities and soil physicochemical properties. The relationship between rhizosphere microbial communities and soil physicochemical properties under continuous cropping conditions is unclear.Methods: This study investigated the succession of rhizosphere microbial community in continuous tobacco cropping soil for 1, 3, 5, 8, 10, 15, and 30 years. The physicochemical properties of the soil were measured, high-throughput sequencing was performed on the rhizosphere microbial community, and correlation analysis was conducted.Results: The results suggested that continuous cropping could significantly enrich soil available nitrogen, available phosphorus, available potassium, and organic matter. Meanwhile, the alpha diversity of the bacterial community was significantly reduced with continuous cropping, indicating significant changes in the structure of bacterial and fungal communities. Based on linear discriminant analysis effect size (LEfSe), 173 bacterial and 75 fungal genera were identified with significant differences. The bacterial genera, Sphingomonas, Streptomyces, and Microvirga, were significantly positively correlated with continuous cropping years. The fungal genera, Tausonia, Solicocozyma, Pseudomycohila, and Fusarium, also showed significant positive correlation with continuous cropping years. Meanwhile, the fungal genera, Olpidium, Cephaliophora, and Cercophora, presented an opposite correlation. However, there are differences in the correlation between these bacterial and fungal genera related to continuous cropping years and other different soil physicochemical properties.Discussion: In summary, this work could provide a reference for soil management and scientific fertilization of tobacco under continuous cropping conditions
    corecore