63 research outputs found

    On the Mathematics of RNA Velocity II: Algorithmic Aspects

    Full text link
    In a previous paper [CSIAM Trans. Appl. Math. 2 (2021), 1-55], the authors proposed a theoretical framework for the analysis of RNA velocity, which is a promising concept in scRNA-seq data analysis to reveal the cell state-transition dynamical processes underlying snapshot data. The current paper is devoted to the algorithmic study of some key components in RNA velocity workflow. Four important points are addressed in this paper: (1) We construct a rational time-scale fixation method which can determine the global gene-shared latent time for cells. (2) We present an uncertainty quantification strategy for the inferred parameters obtained through the EM algorithm. (3) We establish the optimal criterion for the choice of velocity kernel bandwidth with respect to the sample size in the downstream analysis and discuss its implications. (4) We propose a temporal distance estimation approach between two cell clusters along the cellular development path. Some illustrative numerical tests are also carried out to verify our analysis. These results are intended to provide tools and insights in further development of RNA velocity type methods in the future.Comment: 32 pages, 5 figure

    BMSC Transplantation Aggravates Inflammation, Oxidative Stress, and Fibrosis and Impairs Skeletal Muscle Regeneration

    Get PDF
    Skeletal muscle contusion is one of the most common muscle injuries in sports medicine and traumatology. Bone marrow mesenchymal stem cell (BMSC) transplantation has been proposed as a promising strategy to promote skeletal muscle regeneration. However, the roles and underlying mechanisms of BMSCs in the regulation of skeletal muscle regeneration are still not completely clear. Here, we investigated the role of BMSC transplantation after muscle contusion. BMSCs were immediately transplanted into gastrocnemius muscles (GMs) following direct contusion. Comprehensive morphological and genetic analyses were performed after BMSC transplantation. BMSC transplantation exacerbated muscle fibrosis and inflammation, as evidenced by increased leukocyte and macrophage infiltration, increased inflammatory cytokines and chemokines, and increased matrix metalloproteinases. BMSC transplantation also increased muscle oxidative stress. Overall, BMSC transplantation aggravated inflammation, oxidative stress and fibrosis and impaired skeletal muscle regeneration. These results, shed new light on the role of BMSCs in regenerative medicine and indicate that caution is needed in the application of BMSCs for muscle injury

    spliceJAC: transition genes and state‐specific gene regulation from single‐cell transcriptome data

    No full text
    Extracting dynamical information from single-cell transcriptomics is a novel task with the promise to advance our understanding of cell state transition and interactions between genes. Yet, theory-oriented, bottom-up approaches that consider differences among cell states are largely lacking. Here, we present spliceJAC, a method to quantify the multivariate mRNA splicing from single-cell RNA sequencing (scRNA-seq). spliceJAC utilizes the unspliced and spliced mRNA count matrices to constructs cell state-specific gene-gene regulatory interactions and applies stability analysis to predict putative driver genes critical to the transitions between cell states. By applying spliceJAC to biological systems including pancreas endothelium development and epithelial-mesenchymal transition (EMT) in A549 lung cancer cells, we predict genes that serve specific signaling roles in different cell states, recover important differentially expressed genes in agreement with pre-existing analysis, and predict new transition genes that are either exclusive or shared between different cell state transitions
    corecore