158 research outputs found

    Barley Phenology: Physiological and Molecular Mechanisms for Heading Date and Modelling of Genotype‐Environment‐ Management Interactions

    Get PDF
    Barley heading date is important in adapting barley genotypes to different environments. Important factors affecting heading date in barley are temperatures, photoperiod and sowing date. Sowing date is a management option to influence heading date. It is used to reduce climatic risks such as frosts and water stress at sensitive periods during crop development. Three major genes control heading date in barley. These genes regulate photoperiod (Ppd-H1 and Ppd-H2), vernalization (Vrn- H1, Vrn-H2 and Vrn-H3) and the duration of the vegetative phase (Eps). The Ppd-H1 locus on chromosome 2(2H) regulates flowering time under long days. Ppd-H2 on 2H regulates phenology under short day length. Vernalization is mainly controlled by three loci (VRN-H1, VRN-H2 and VRN-H3), which interact in an epistatic fashion to determine vernalization sensitivity. Appropriate physiological and simulation frameworks such as that of APSIM-Barley are required to complement breeding efforts in order to determine the location of the Eps genes and describe and quantify the effects of environment and management on gene expression and their impact on yields and quality in barley

    Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers.</p> <p>Results</p> <p>Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Q<sub>wt</sub>4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival.</p> <p>Conclusion</p> <p>Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.</p

    Molecular approaches unravel the mechanism of acid soil tolerance in plants

    Get PDF
    AbstractAcid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum (Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars. Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance. Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research

    Soil and Crop Management Practices to Minimize the Impact of Waterlogging on Crop Productivity

    Get PDF
    Waterlogging remains a significant constraint to cereal production across the globe in areas with high rainfall and/or poor drainage. Improving tolerance of plants to waterlogging is the most economical way of tackling the problem. However, under severe waterlogging combined agronomic, engineering and genetic solutions will be more effective. A wide range of agronomic and engineering solutions are currently being used by grain growers to reduce losses from waterlogging. In this scoping study, we reviewed the effects of waterlogging on plant growth, and advantages and disadvantages of various agronomic and engineering solutions which are used to mitigate waterlogging damage. Further research should be focused on: cost/benefit analyses of different drainage strategies; understanding the mechanisms of nutrient loss during waterlogging and quantifying the benefits of nutrient application; increasing soil profile de-watering through soil improvement and agronomic strategies; revealing specificity of the interaction between different management practices and environment as well as among management practices; and more importantly, combined genetic, agronomic and engineering strategies for varying environments

    A DArT platform for quantitative bulked segregant analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bulked segregant analysis (BSA) identifies molecular markers associated with a phenotype by screening two DNA pools of phenotypically distinct plants for markers with skewed allele frequencies. In contrast to gel-based markers, hybridization-based markers such as SFP, DArT or SNP generate quantitative allele-frequency estimates. Only DArT, however, combines this advantage with low development and assay costs and the ability to be deployed for any plant species irrespective of its ploidy level. Here we investigate the suitability of DArT for BSA applications using a barley array as an example.</p> <p>Results</p> <p>In a first test experiment, we compared two bulks of 40 Steptoe/Morex DH plants with contrasting pubescent leaves (mPub) alleles on chromosome 3H. At optimized levels of experimental replication and marker-selection threshold, the BSA scan identified 433 polymorphic markers. The relative hybridization contrast between bulks accurately reflected the between-bulk difference in the frequency of the mPub allele (r = 0.96). The 'platform noise' of DArT assays, estimated by comparing two identical aliquots of a DNA mixture, was significantly lower than the 'pooling noise' reflecting the binomial sampling variance of the bulking process. The allele-frequency difference on chromosome 3H increased in the vicinity of mPub and peaked at the marker with the smallest distance from mPub (4.6 cM). In a validation experiment with only 20 plants per bulk we identified an aluminum (Al) tolerance locus in a Dayton/Zhepi2 DH population on chromosome 4H with < 0.8 cM precision, the same Al-tolerance locus that had been mapped before in other barley populations.</p> <p>Conclusion</p> <p>DArT-BSA identifies genetic loci that influence phenotypic characters in barley with at least 5 cM accuracy and should prove useful as a generic tool for high-throughput, quantitative BSA in plants irrespective of their ploidy level.</p

    Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species

    Get PDF
    Wild rice species provide a rich source of genetic diversity for possible introgression of salinity stress tolerance in cultivated rice. We investigated the physiological basis of salinity stress tolerance in Oryza species by using six rice genotypes (Oryza sativa L.) and four wild rice species. Three weeks of salinity treatment significantly (P < 0.05) reduced physiological and growth indices of all cultivated and wild rice lines. However, the impact of salinity-induced growth reduction differed substantially among accessions. Salt tolerant accessions showed better control over gas exchange properties, exhibited higher tissue tolerance, and retained higher potassium ion content despite higher sodium ion accumulation in leaves. Wild rice species showed relatively lower and steadier xylem sap sodium ion content over the period of 3 weeks analysed, suggesting better control over ionic sodium xylem loading and its delivery to shoots with efficient vacuolar sodium ion sequestration. Contrary to this, saline sensitive genotypes managed to avoid initial Na+ loading but failed to accomplish this in the long term and showed higher sap sodium ion content. Conclusively, our results suggest that wild rice genotypes have more efficient control over xylem sodium ion loading, rely on tissue tolerance mechanisms and allow for a rapid osmotic adjustment by using sodium ions as cheap osmoticum for osmoregulation

    Comparative analysis of Root Na+ relation under salinity between Oryza sativa and Oryza coarctata

    Get PDF
    Na+ toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na+ uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na+ uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na+ loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na+ concentration by increased activity of a high affinity K+ transporter HKT1;5 (essential for xylem Na+ unloading) and a Na+ /H+ exchanger NHX (for sequestering Na+ and K+ into root vacuoles). Cultivated rice prevented Na+ uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na+ uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na+ /H+ Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na+ entry into root cells while cultivated rice relies heavily on SOS1-mediating Na+ exclusion, with major penalties imposed by the existence of the “futile cycle” at the plasma membrane

    The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley

    Get PDF
    BACKGROUND: Studies in Arabidopsis show that DELLA genes may differentially affect responses to biotrophic and necrophic pathogens. A recent report based on the study of DELLA-producing reduced height (Rht) genes in wheat and barley also hypothesized that DELLA genes likely increased susceptibility to necrotrophs but increased resistance to biotrophs. RESULTS: Effects of uzu, a non-GA (gibberellic acid)-responsive semi-dwarfing gene, on Fusarium crown rot (FCR) resistance in barley were investigated. Fifteen pairs of near isogenic lines for this gene were generated and assessed under two different temperature regimes. Similar to its impacts on plant height, the semi-dwarfing gene uzu also showed larger effects on FCR severity in the high temperature regime when compared with that in the low temperature regime. CONCLUSIONS: Results from this study add to the growing evidence showing that the effects of plant height on Fusarium resistances are unlikely related to DELLA genes but due to direct or indirect effects of height difference per se. The interaction between these two characteristics highlights the importance of understanding relationships between resistance and other traits of agronomic importance as the value of a resistance gene could be compromised if it dramatically affects plant development and morphology
    corecore