19 research outputs found

    Dust aerosol optical depth retrieval and dust storm detection for Xinjiang Region using Indian National Satellite Observations

    Get PDF
    The Xinjiang Uyghur Autonomous Region (Xinjiang) is located near the western border of China. Xinjiang has a high frequency of dust storms, especially in late winter and early spring. Geostationary satellite remote sensing offers an ideal way to monitor the regional distribution and intensity of dust storms, which can impact the regional climate. In this study observations from the Indian National Satellite (INSAT) 3D are used for dust storm detection in Xinjiang because of the frequent 30-min observations with six bands. An analysis of the optical properties of dust and its quantitative relationship with dust storms in Xinjiang is presented for dust events in April 2014. The Aerosol Optical Depth (AOD) derived using six predefined aerosol types shows great potential to identify dust events. Cross validation between INSAT-3D retrieved AOD and MODIS AOD shows a high coefficient of determination (R2 = 0.92). Ground validation using AERONET (Aerosol Robotic Network) AOD also shows a good correlation with R2 of 0.77. We combined the apparent reflectance (top-of-atmospheric reflectance) of visible and shortwave infrared bands, brightness temperature of infrared bands and retrieved AOD into a new Enhanced Dust Index (EDI). EDI reveals not only dust extent but also the intensity. EDI performed very well in measuring the intensity of dust storms between 22 and 24 April 2014. A visual comparison between EDI and Feng Yun-2E (FY-2E) Infrared Difference Dust Index (IDDI) also shows a high level of similarity. A good linear correlation (R2 of 0.78) between EDI and visibility on the ground demonstrates good performance of EDI in estimating dust intensity. A simple threshold method was found to have a good performance in delineating the extent of the dust plumes but inadequate for providing information on dust plume intensity

    Effects of Different Grazing Intensities on Soil C, N, and P in an Alpine Meadow on the Qinghai—Tibetan Plateau, China

    No full text
    Inappropriate grazing management is one of the most common causes of grassland degradation, and thus, an assessment of soil properties under different grazing intensities is critical for understanding its effects on ecosystem nutrient cycling and for formulating appropriate management strategies. However, the responses of certain main elements, including soil carbon, nitrogen, and phosphorus, to grazing in alpine meadow ecosystems remain insufficiently clarified. Here, we measured carbon, nitrogen, and phosphorus contents in the topmost 30 cm of soil in an alpine meadow under three grazing intensities (light, moderate, and heavy) and found clear differences in soil physical and chemical properties among different grazing intensities and soil layers. As grazing intensity increased, soil water content, carbon and nitrogen contents and stocks, and carbon to phosphorus and nitrogen to phosphorus ratios decreased, whereas soil bulk density increased. However, soil phosphorus and carbon to nitrogen ratio remained stable. Our findings highlight the negative impacts of heavy grazing intensity, in terms of soil carbon and nitrogen loss and phosphorus mineralization. Moreover, we emphasize that further related studies are necessary to gain a more comprehensive understanding of the effects of grazing on grassland ecosystems, and thereby provide information for sustainable management practices and eco-compensation policies

    Global burden of hematologic malignancies and evolution patterns over the past 30 years

    No full text
    Abstract Hematologic malignancies are among the most common cancers, and understanding their incidence and death is crucial for targeting prevention, clinical practice improvement, and research resources appropriately. Here, we investigated detailed information on hematological malignancies for the period 1990–2019 from the Global Burden of Disease study. The age-standardized incidence rate (ASIR), the age-standardized death rate (ASDR), and the corresponding estimated annual percentage changes (EAPC) were calculated to assess temporal trends in 204 countries and territories over the past 30 years. Globally, incident cases of hematologic malignancies have been increasing since 1990, reaching 1343.85 thousand in 2019, but the ASDR for all types of hematologic malignancies has been declining. The ASDR for leukemia, multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma were 4.26, 1.42, 3.19, and 0.34 per 100,000 population in 2019, respectively, with Hodgkin lymphoma showing the most significant decline. However, the trend varies by gender, age, region, and the country’s economic situation. The burden of hematologic malignancies is generally higher in men, and this gender gap decreases after peaking at a given age. The regions with the largest increasing trend in the ASIR of leukemia, multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma were Central Europe, Eastern Europe, East Asia, and Caribbean, respectively. In addition, the proportion of deaths attributed to high body-mass index continued to rise across regions, especially in regions with high socio-demographic indices (SDI). Meanwhile, the burden of leukemia from occupational exposure to benzene and formaldehyde was more widespread in areas with low SDI. Thus, hematologic malignancies remain the leading cause of the global tumor burden, with growing absolute numbers but sharp among several age-standardized measures over the past three decades. The results of the study will inform analysis of trends in the global burden of disease for specific hematologic malignancies and develop appropriate policies for these modifiable risks

    Ambulatory 24-hour multichannel intraluminal impedance-pH monitoring and high resolution endoscopy distinguish patients with non-erosive reflux disease from those with functional heartburn.

    No full text
    AIMS:To assess the contribution of 24-h esophageal multichannel intraluminal impedance and pH (MII-pH) monitoring and high resolution endoscopy (HRE) with i-scan imaging in differentiating non erosive reflux disease (NERD) from functional heartburn (FH). METHODS:This is a retrospective cohort study of patients with heartburn from the Endoscopy Unit. NERD patients and FH patients were defined by 24-h MII-pH monitoring and white light endoscopy. Minimal mucosal changes were assessed by HRE with i-scan imaging. RESULTS:Total of 156 consecutive patients with heartburn but without esophageal mucosal erosions were studied. Forty-eight of these subjects had NERD, with increased acid exposure time (AET) and positive SAP and/or SI. Eighteen had FH with normal AET and negative SAP and SI. When compared to FH patients and healthy controls, NERD patients had significantly increased number of total acid reflux episodes, as well as increased number of weakly acidic reflux episodes (p<0.01). The rate of proximal reflux episodes in NERD patients was higher than that of FH patients and healthy controls (p<0.01). Irregular or blurring of the Z-line (58.3%) and white mucosal turbidity (47.9%) were the most common endoscopic findings of minimal mucosal changes observed in this study. NERD patients had more prevalent minimal changes than FH patients and the controls (87.5%vs. 66.6%vs. 61.9%; p = 0.004) with sensitivity of 87.5%. Histopathological evaluation showed that NERD patients had significantly higher average scores of intercellular spaces dilation (2.82±0.9 vs. 1.2±0.6, p = 0.005) and papillae elongation (2.65±1.0 vs. 1.5±0.8, p = 0.014), but not for basal cell proliferation (1.6±1.3 vs. 1.0±0.9, p = 0.070). The histological scores of the NERD patients were 7.1±1.2, which were higher than those of FH patients (3.4±1.0, p = 0.004). CONCLUSIONS:Minimal mucosal changes could be useful markers to support clinical diagnosis of NERD. Combination of 24-h MII-pH monitoring and i-scan high resolution endoscopy can distinguish patients with NERD from those with FH

    Bird Satellite Tracking Revealed Critical Protection Gaps in East Asian–Australasian Flyway

    No full text
    Most migratory birds depend on stopover sites, which are essential for refueling during migration and affect their population dynamics. In the East Asian&#8211;Australasian Flyway (EAAF), however, the stopover ecology of migratory waterfowl is severely under-studied. The knowledge gaps regarding the timing, intensity and duration of stopover site usages prevent the development of effective and full annual cycle conservation strategies for migratory waterfowl in EAAF. In this study, we obtained a total of 33,493 relocations and visualized 33 completed spring migratory paths of five geese species using satellite tracking devices. We delineated 2,192,823 ha as the key stopover sites along the migration routes and found that croplands were the largest land use type within the stopover sites, followed by wetlands and natural grasslands (62.94%, 17.86% and 15.48% respectively). We further identified the conservation gaps by overlapping the stopover sites with the World Database on Protected Areas (PA). The results showed that only 15.63% (or 342,757 ha) of the stopover sites are covered by the current PA network. Our findings fulfil some key knowledge gaps for the conservation of the migratory waterbirds along the EAAF, thus enabling an integrative conservation strategy for migratory water birds in the flyway

    Development of a risk assessment model for cardiac injury in patients newly diagnosed with acute myeloid leukemia based on a multicenter, real-world analysis in China

    No full text
    Abstract Background Studies have revealed that acute myeloid leukemia (AML) patients are prone to combined cardiac injury. We aimed to identify hematological risk factors associated with cardiac injury in newly diagnosed AML patients before chemotherapy and develop a personalized predictive model. Methods The population baseline, blood test, electrocardiogram, echocardiograph, and genetic and cytogenetic data were collected from newly diagnosed AML patients. The data were subdivided into training and validation cohorts. The independent risk factors were explored by univariate and multivariate logistic regression analysis respectively, and data dimension reduction and variable selection were performed using the least absolute shrinkage and selection operator (LASSO) regression models. The nomogram was generated and the reliability and generalizability were verified by receiver operating characteristic (ROC) curves, the area under the curve (AUC) and calibration curves in an external validation cohort. Results Finally, 499 AML patients were included. After univariate logistic regression, LASSO regression and multivariate logistic regression analysis, abnormal NT-proBNP, NPM1 mutation, WBC, and RBC were independent risk factors for cardiac injury in AML patients (all P < 0.05). The nomogram was constructed based on the above four variables with high accuracy. The area under the curve was 0.742, 0.750, and 0.706 in the training, internal validation, and external validation cohort, respectively. The calibration curve indicated that the model has good testing capability. The Kaplan-Meier curve showed that the higher the risk of combined cardiac injury in AML patients, the lower their probability of survival. Conclusions This prediction nomogram identifies hematological risk factors associated with cardiac injury in newly diagnosed AML patients and can help hematologists identify the risk and provide precise treatment options

    Ewrapper: Operationalizing engagement strategies in mHealth

    No full text
    The advancement of digital technologies particularly in the domain of mobile health (mHealth) holds great promise in the promotion of health behavior. However, keeping users engaged remains a central challenge. This paper proposes a novel approach to address this issue by supplementing existing and future mHealth applications with an engagement wrapper - a collection of engagement strategies integrated into a single, coherent model. The engagement wrapper is operationalized within the format of an ambient display on the lock screen of mobile devices

    Whose Oxygen Atom Is Transferred to the Products? A Case Study of Peracetic Acid Activation via Complexed Mn<sup>II</sup> for Organic Contaminant Degradation

    No full text
    Identifying reactive species in advanced oxidation process (AOP) is an essential and intriguing topic that is also challenging and requires continuous efforts. In this study, we exploited a novel AOP technology involving peracetic acid (PAA) activation mediated by a MnII–nitrilotriacetic acid (NTA) complex, which outperformed iron- and cobalt-based PAA activation processes for rapidly degrading phenolic and aniline contaminants from water. The proposed MnII/NTA/PAA system exhibited non-radical oxidation features and could stoichiometrically oxidize sulfoxide probes to the corresponding sulfone products. More importantly, we traced the origin of O atoms from the sulfone products by 18O isotope-tracing experiments and found that PAA was the only oxygen-donor, which is different from the oxidation process mediated by high-valence manganese-oxo intermediates. According to the results of theoretical calculations, we proposed that NTA could tune the coordination circumstance of the MnII center to elongate the O–O bond of the complexed PAA. Additionally, the NTA-MnII-PAA* molecular cluster presented a lower energy gap than the MnII–PAA complex, indicating that the MnII–peroxy complex was more reactive in the presence of NTA. Thus, the NTA-MnII-PAA* complex exhibited a stronger oxidation potential than PAA, which could rapidly oxidize organic contaminants from water. Further, we generalized our findings to the CoII/PAA oxidation process and highlighted that the CoII–PAA* complex might be the overlooked reactive cobalt species. The significance of this work lies in discovering that sometimes the metal–peroxy complex could directly oxidize the contaminants without the further generation of high-valence metal-oxo intermediates and/or radical species through interspecies oxygen and/or electron transfer
    corecore