19 research outputs found
Bacterial Effector HopF2 Suppresses Arabidopsis Immunity by Targeting BAK1
Pseudomonas syringae delivers a plethora of effector proteins into host cells to sabotage host immune responses and physiology to favor infection. We have previously shown that P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis innate immunity triggered by multiple pathogen-associated molecular patterns (PAMP) at the plasma membrane. We show here that HopF2 possesses distinct mechanisms in the suppression of two branches of PAMP-activated MAP kinase cascades. In contrast to blocking MKK5 in MEKK1-MKK4/5-MPK3/6 cascade, HopF2 targets additional component(s) upstream of MEKK1 in MEKK1-MKK1/2-MPK4 cascade and plasma membrane-localized receptor-like cytoplasmic kinase BIK1 and its homologs. We further show that HopF2 directly targets BAK1, a plasma membrane-localized receptor-like kinase involved in multiple PAMP signaling. The interaction between BAK1 and HopF2 or two additional P. syringae effectors AvrPto and AvrPtoB, was confirmed in vivo and in vitro. Consistent with BAK1 as a physiological target of HopF2, the lethality of overexpression of HopF2 in wild-type Arabidopsis transgenic plants was largely alleviated in bak1 mutant plants. Identification of BAK1 as an additional HopF2 virulence target not only explains HopF2 suppression of multiple PAMP signaling at the plasma membrane, but also supports the notion that pathogen virulence effectors have multiple targets in host cells
Ligand-induced monoubiquitination of BIK1 regulates plant immunity
The detection of microorganism-associated ligands by plant cells activates a signalling cascade in which the kinase BIK1 is monoubiquinated, released from the FLS2-BAK1 complex, and internalized by endocytosis.
Recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) triggers the first line of inducible defence against invading pathogens(1-3). Receptor-like cytoplasmic kinases (RLCKs) are convergent regulators that associate with multiple PRRs in plants(4). The mechanisms that underlie the activation of RLCKs are unclear. Here we show that when MAMPs are detected, the RLCK BOTRYTIS-INDUCED KINASE 1 (BIK1) is monoubiquitinated following phosphorylation, then released from the flagellin receptor FLAGELLIN SENSING 2 (FLS2)-BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) complex, and internalized dynamically into endocytic compartments. The Arabidopsis E3 ubiquitin ligases RING-H2 FINGER A3A (RHA3A) and RHA3B mediate the monoubiquitination of BIK1, which is essential for the subsequent release of BIK1 from the FLS2-BAK1 complex and activation of immune signalling. Ligand-induced monoubiquitination and endosomal puncta of BIK1 exhibit spatial and temporal dynamics that are distinct from those of the PRR FLS2. Our study reveals the intertwined regulation of PRR-RLCK complex activation by protein phosphorylation and ubiquitination, and shows that ligand-induced monoubiquitination contributes to the release of BIK1 family RLCKs from the PRR complex and activation of PRR signalling
Proteolytic processing of SERK3/BAK1 regulates plant immunity, development and cell death
Plants have evolved many receptor-like kinases (RLKs) to sense extrinsic and intrinsic cues. The signaling pathways mediated by multiple leucine-rich repeat (LRR) RLK (LRR-RLK) receptors require ligand-induced receptor-coreceptor heterodimerization and transphosphorylation with BAK1/SERK family LRR-RLKs. Here we reveal an additional layer of regulation of BAK1 via a Ca2+-dependent proteolytic cleavage process that is conserved in Arabidopsis thaliana, Nicotiana benthamiana and Saccharomyces cerevisiae . The proteolytic cleavage of BAK1 is intrinsically regulated in response to developmental cues and immune stimulation. The surface-exposed aspartic acid (D287) residue of BAK1 is critical for its proteolytic cleavage and plays an essential role in BAK1-regulated plant immunity, growth hormone brassinosteroid-mediated responses and cell death containment. BAK1D287A mutation impairs BAK1 phosphorylation on its substrate BIK1, and its plasma membrane (PM) localization. Intriguingly, it aggravates BAK1 overexpression-triggered cell death independent of BIK1, suggesting that maintaining homeostasis of BAK1 through a proteolytic process is crucial to control plant growth and immunity. Our data reveal that in addition to layered transphosphorylation in the receptor complexes, the proteolytic cleavage is an important regulatory process for the proper functions of the shared co-receptor BAK1 in diverse cellular signaling pathways
Ligand-Induced Receptor-like Kinase Complex Regulates Floral Organ Abscission in Arabidopsis
Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation