269 research outputs found

    Double Permutation Equivariance for Knowledge Graph Completion

    Full text link
    This work provides a formalization of Knowledge Graphs (KGs) as a new class of graphs that we denote doubly exchangeable attributed graphs, where node and pairwise (joint 2-node) representations must be equivariant to permutations of both node ids and edge (& node) attributes (relations & node features). Double-permutation equivariant KG representations open a new research direction in KGs. We show that this equivariance imposes a structural representation of relations that allows neural networks to perform complex logical reasoning tasks in KGs. Finally, we introduce a general blueprint for such equivariant representations and test a simple GNN-based double-permutation equivariant neural architecture that achieve state-of-the-art Hits@10 test accuracy in the WN18RR, FB237 and NELL995 inductive KG completion tasks, and can accurately perform logical reasoning tasks that no existing methods can perform, to the best of our knowledge

    SignReLU neural network and its approximation ability

    Full text link
    Deep neural networks (DNNs) have garnered significant attention in various fields of science and technology in recent years. Activation functions define how neurons in DNNs process incoming signals for them. They are essential for learning non-linear transformations and for performing diverse computations among successive neuron layers. In the last few years, researchers have investigated the approximation ability of DNNs to explain their power and success. In this paper, we explore the approximation ability of DNNs using a different activation function, called SignReLU. Our theoretical results demonstrate that SignReLU networks outperform rational and ReLU networks in terms of approximation performance. Numerical experiments are conducted comparing SignReLU with the existing activations such as ReLU, Leaky ReLU, and ELU, which illustrate the competitive practical performance of SignReLU

    AntFuzzer: A Grey-Box Fuzzing Framework for EOSIO Smart Contracts

    Full text link
    In the past few years, several attacks against the vulnerabilities of EOSIO smart contracts have caused severe financial losses to this prevalent blockchain platform. As a lightweight test-generation approach, grey-box fuzzing can open up the possibility of improving the security of EOSIO smart contracts. However, developing a practical grey-box fuzzer for EOSIO smart contracts from scratch is time-consuming and requires a deep understanding of EOSIO internals. In this work, we proposed AntFuzzer, the first highly extensible grey-box fuzzing framework for EOSIO smart contracts. AntFuzzer implements a novel approach that interfaces AFL to conduct AFL-style grey-box fuzzing on EOSIO smart contracts. Compared to black-box fuzzing tools, AntFuzzer can effectively trigger those hard-to-cover branches. It achieved an improvement in code coverage on 37.5% of smart contracts in our benchmark dataset. AntFuzzer provides unified interfaces for users to easily develop new detection plugins for continually emerging vulnerabilities. We have implemented 6 detection plugins on AntFuzzer to detect major vulnerabilities of EOSIO smart contracts. In our large-scale fuzzing experiments on 4,616 real-world smart contracts, AntFuzzer successfully detected 741 vulnerabilities. The results demonstrate the effectiveness and efficiency of AntFuzzer and our detection p

    TENT: Connect Language Models with IoT Sensors for Zero-Shot Activity Recognition

    Full text link
    Recent achievements in language models have showcased their extraordinary capabilities in bridging visual information with semantic language understanding. This leads us to a novel question: can language models connect textual semantics with IoT sensory signals to perform recognition tasks, e.g., Human Activity Recognition (HAR)? If so, an intelligent HAR system with human-like cognition can be built, capable of adapting to new environments and unseen categories. This paper explores its feasibility with an innovative approach, IoT-sEnsors-language alignmEnt pre-Training (TENT), which jointly aligns textual embeddings with IoT sensor signals, including camera video, LiDAR, and mmWave. Through the IoT-language contrastive learning, we derive a unified semantic feature space that aligns multi-modal features with language embeddings, so that the IoT data corresponds to specific words that describe the IoT data. To enhance the connection between textual categories and their IoT data, we propose supplementary descriptions and learnable prompts that bring more semantic information into the joint feature space. TENT can not only recognize actions that have been seen but also ``guess'' the unseen action by the closest textual words from the feature space. We demonstrate TENT achieves state-of-the-art performance on zero-shot HAR tasks using different modalities, improving the best vision-language models by over 12%.Comment: Preprint manuscript in submissio

    A Brief Analysis on the Building of Mental-Health Counselor Team

    Get PDF
    Mental-health counselors are the main force of mental-health education team in university, and the building of mental-health counselor team also serves as the main content of mental-health education in university. Through the analysis of the necessity and status quo of the building of mental-health counselor team in university, this paper puts forward several opinions and suggestions in order to promote the sustainable development of the professionalization and normalization of mental-health work in university
    • …
    corecore