169 research outputs found
Mass Loss and Chemical Structures of Wheat and Maize Straws in Response to Ultravoilet-B Radiation and Soil Contact
The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems
Biocontrol of Pear Postharvest Decay by Kombucha
Kombucha is sweetened, slightly alcoholic, and lightly effervescent tea drink. Its acidity inhibits the growth of harmful bacteria. Here, we studied effect of kombucha on post-harvest preservation of pear. The Hosui pears were soaked with the kombucha for 15 minutes, and in distilled water as the control, respectively. Superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), hydrogen peroxide (H2O2), proline content, electric conductivity, weight loss rate and good fruit rate in pear were measured during storage at room temperature. The results showed that the kombucha could effectively prolong the storage time of pear fruit. The fruit quality of the treated group was 1.5 times higher than that of the control pear fruit when stored at room temperature for 18 days. The weight loss rate, MDA content and electric conductivity of the treatment group were lower than those of the control group during the whole storage period, indicating that kombucha can inhibit the transformation of polysaccharides such as starch and pectin, and delay the degradation of nutrients in the fruit, resulting in a decrease in weight loss rate, inhibition of membrane lipid peroxidation, reducing MDA content, electric conductivity, maintaining cell membrane stability, delaying pear fruit senescence. Kombucha can inhibit the content of H2O2 and proline, increase the activity of POD and SOD increase the storage stability of fruits. The purpose of this study was to elucidate the physiological mechanism of post-harvest preservation of pear by kombucha. The use of kombucha can prolong the supply period of pear, increase economic benefits and expand the market of pear
Understanding physiological and molecular mechanisms of Populus deltoides ‘DanHongYang’ tolerance to waterlogging by comparative transcriptome analysis
Populus deltoides ‘DanHongYang’ (DHY) was identified as a waterlogging-resistant cultivar in our previous study. Here, the phenotype, physiological features and transcriptome profiling of P. deltoides ‘DHY’ between the treatments of waterlogging and control were compared. Waterlogging treatment led to distinctly formation of adventitious roots from P. deltoides ‘DHY’ stems. The activities of ascorbate peroxidase and glutathione reductase significantly increased in the leaves of P. deltoides ‘DHY’ by waterlogging treatment. Comparative transcriptomic analysis showed that 2,447 and 9,465 differentially expressed genes (DEGs) were screened between the leaves and roots of P. deltoides ‘DHY’ under waterlogging and control, respectively. The KEGG analysis showed the most significantly up-regulated DEGs in the leaves and roots were enriched to the pathways of glycolyis and proline synthesis. Some genes involved in stress response, endogenous hormones, antioxidant system and adventitious root development in the waterlogged were identified to contribute to the waterlogging tolerance of P. deltoides ‘DHY’. In addition, some candidate transcription factors such as RAP, NAC, WRKY, and bHLH were also found to be associated with the waterlogging tolerance of P. deltoides ‘DHY’. These findings provided the insights into the physiological and molecular mechanisms underlying the tolerance of P. deltoides ‘DHY’ to waterlogging stresses
Spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive breast cancer
Funding Information: This project was funded by Friends of Aberdeen and North Centre for Haematology, Oncology and Radiotherapy (ANCHOR) (RS2016 004). Sai Man Cheung’s PhD study was jointly supported by Elphinstone scholarship, Roland Sutton Academic Trust and John Mallard scholarship and is currently funded by Cancer Research UK (C68628/A28312). The funding sources were not involved in the study design, in the collection, analysis and interpretation of data, in the writing of the report nor in the decision to submit the article for publication.Peer reviewe
Organic amendments with high proportion of heterocyclic compounds promote soil microbiome shift and microbial use efficiency of straw-C
Soil microbial use efficiency of straw carbon (C), which is the proportion of straw-C microbes assimilate into new biosynthetic material relative to C lost out of the system as CO2, is critical in increasing soil organic C (SOC) content, and hence maintaining soil fertility and productivity. However, the effect of chemical structures of the organic amendments (OAs) on the microbial use efficiency of straw-C remains unclear. The effect of the chemical structure of the OAs on microbial use efficiency of straw-C was elucidated by a combination of 13C-straw labeling with high-throughput sequencing and pyrolysis-GC/MS. We found a strong positive correlation between the microbial use efficiency of straw-C and the proportion of heterocyclic compounds (Hete_C). The microbial use efficiency of straw-C was highest in soil supplemented with Hete_C-dominant OAs, which significantly shifted microbial community structure toward fungal dominance. Specifically, fungal-to-bacterial ratio, fungal richness, and the relative abundance of Ascomycota were higher in soil with a higher proportion of Hete_C-dominant OAs. Together, our study suggests that OAs with high proportion of Hete_C promote the microbial use efficiency of straw-C by increasing the dominance of fungi in the soil microbial community in agroecosystems
Relationship between deltamethrin resistance and gut symbiotic bacteria of Aedes albopictus by 16S rDNA sequencing.
BACKGROUND: Aedes albopictus is an important vector for pathogens such as dengue, Zika, and chikungunya viruses. While insecticides is the mainstay for mosquito control, their widespread and excessive use has led to the increased resistance in Ae. albopictus globally. Gut symbiotic bacteria are believed to play a potential role in insect physiology, potentially linking to mosquitoes metabolic resistance against insecticides. METHODS: We investigated the role of symbiotic bacteria in the development of resistance in Ae. albopictus by comparing gut symbiotic bacteria between deltamethrin-sensitive and deltamethrin-resistant populations. Adults were reared from field-collected larvae. Sensitive and resistant mosquitoes were screened using 0.03% and 0.09% deltamethrin, respectively, on the basis of the World Health Organization (WHO) tube bioassay. Sensitive and resistant field-collected larvae were screened using 5 × LC50 (lethal concentration at 50% mortality) and 20 × LC50 concentration of deltamethrin, respectively. Laboratory strain deltamethrin-sensitive adults and larvae were used as controls. The DNA of gut samples from these mosquitoes were extracted using the magnetic bead method. Bacterial 16S rDNA was sequenced using BGISEQ method. We isolated and cultured gut microorganisms from adult and larvae mosquitoes using four different media: Luria Bertani (LB), brain heart infusion (BHI), nutrient agar (NA), and salmonella shigella (SS). RESULTS: Sequencing revealed significantly higher gut microbial diversity in field-resistant larvae compared with field-sensitive and laboratory-sensitive larvae (P < 0.01). Conversely, gut microorganism diversity in field-resistant and field-sensitive adults was significantly lower compared with laboratory-sensitive adults (P < 0.01). At the species level, 25 and 12 bacterial species were isolated from the gut of field resistant larvae and adults, respectively. The abundance of Flavobacterium spp., Gemmobacter spp., and Dysgonomonas spp. was significantly higher in the gut of field-resistant larvae compared with sensitive larvae (all P < 0.05). Furthermore, the abundance of Flavobacterium spp., Pantoea spp., and Aeromonas spp. was significantly higher in the gut of field-resistant adults compared with sensitive adults (all P < 0.05). The dominant and differentially occurring microorganisms were also different between resistant larval and adult mosquitoes. These findings suggest that the gut commensal bacteria of Ae. albopictus adults and larvae may play distinct roles in their deltamethrin resistance. CONCLUSIONS: This study provides an empirical basis for further exploration of the mechanisms underlying the role of gut microbial in insecticide resistance, potentially opening a new prospect for mosquito control strategies
Genetic Diversity and Population Structure Analysis of Sand Pear (Pyrus pyrifolia) ‘Nakai’ Varieties Using SSR and AFLP Markers
In this study, the technologies of simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers were used to analyze the genetic diversity of 30 sand pear (Pyrus pyrifolia) ‘Nakai’ varieties. Ten pairs of SSR polymorphic primers were selected to amplify P. pyrifolia ‘Nakai’ varieties. A total of 90 alleles were detected. The polymorphism information content index was between 0.5578 and 0.8423, with an average of 0.7585. The selected 10 pairs of AFLP primer combinations were used to amplify the analyzed pear varieties, and 1,046 polymorphic loci were detected. The average amplification results of each primer combination detected 105 bands with an average polymorphism percentage of 86.46%. The combined data of SSR and AFLP analysis showed that the analyzed P. pyrifolia ‘Nakai’ varieties were characterized by extremely rich genetic diversity and were highly representative. According to the results of SSR, AFLP, and SSR+AFLP cluster analysis, the analyzed P. pyrifolia ‘Nakai’ varieties can be categorized into three clusters. The results of genetic structure showed that the hybridization between these P. pyrifolia ‘Nakai’ varieties resulted in the heterozygosity of genotypes. In addition, we found that ‘Nijisseik’, ‘Ejima’, and ‘Fuli’ are good parent resources among the pear varieties through observing the genetic background of the analyzed pear varieties. This study reveals the genetic diversity levels of P. pyrifolia ‘Nakai’ varieties at the molecular level, which was important in molecular identification and protection of pear germplasm resources, as well as pear variety breeding and genetic improvement
Biodiversity of network modules drives ecosystem functioning in biochar-amended paddy soil
IntroductionSoil microbes are central in governing soil multifunctionality and driving ecological processes. Despite biochar application has been reported to enhance soil biodiversity, its impacts on soil multifunctionality and the relationships between soil taxonomic biodiversity and ecosystem functioning remain controversial in paddy soil.MethodsHerein, we characterized the biodiversity information on soil communities, including bacteria, fungi, protists, and nematodes, and tested their effects on twelve ecosystem metrics (including functions related to enzyme activities, nutrient provisioning, and element cycling) in biochar-amended paddy soil.ResultsThe biochar amendment augmented soil multifunctionality by 20.1 and 35.7% in the early stage, while the effects were diminished in the late stage. Moreover, the soil microbial diversity and core modules were significantly correlated with soil multifunctionality.DiscussionOur analysis revealed that not just soil microbial diversity, but specifically the biodiversity within the identified microbial modules, had a more pronounced impact on ecosystem functions. These modules, comprising diverse microbial taxa, especially protists, played key roles in driving ecosystem functioning in biochar-amended paddy soils. This highlights the importance of understanding the structure and interactions within microbial communities to fully comprehend the impact of biochar on soil ecosystem functioning in the agricultural ecosystem
- …