63 research outputs found

    Joint Optimization of Energy Consumption and Completion Time in Federated Learning

    Full text link
    Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. To balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios, we formulate an optimization problem to minimize a weighted sum of total energy consumption and completion time through two weight parameters. The optimization variables include bandwidth, transmission power and CPU frequency of each device in the FL system, where all devices are linked to a base station and train a global model collaboratively. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, and CPU frequency for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm not only has better performance at different weight parameters (i.e., different demands) but also outperforms the state of the art.Comment: This paper appears in the Proceedings of IEEE International Conference on Distributed Computing Systems (ICDCS) 2022. Please feel free to contact us for questions or remark

    GeohashTile: Vector Geographic Data Display Method Based on Geohash

    Get PDF
    © 2020 MDPI AG. All rights reserved. In the development of geographic information-based applications for mobile devices, achieving better access speed and visual effects is the main research aim. In this paper, we propose a new geographic data display method based on Geohash, namely GeohashTile, to improve the performance of traditional geographic data display methods in data indexing, data compression, and the projection of different granularities. First, we use the Geohash encoding system to represent coordinates, as well as to partition and index large-scale geographic data. The data compression and tile encoding is accomplished by Geohash. Second, to realize a direct conversion between Geohash and screen-pixel coordinates, we adopt the relative position projection method. Finally, we improve the calculation and rendering efficiency by using the intermediate result caching method. To evaluate the GeohashTile method, we have implemented the client and the server of the GeohashTile system, which is also evaluated in a real-world environment. The results show that Geohash encoding can accurately represent latitude and longitude coordinates in vector maps, while the GeohashTile framework has obvious advantages when requesting data volume and average load time compared to the state-of-the-art GeoTile system

    LSTM-Aided Hybrid Random Access Scheme for 6G Machine Type Communication Networks

    Full text link
    In this paper, an LSTM-aided hybrid random access scheme (LSTMH-RA) is proposed to support diverse quality of service (QoS) requirements in 6G machine-type communication (MTC) networks, where massive MTC (mMTC) devices and ultra-reliable low latency communications (URLLC) devices coexist. In the proposed LSTMH-RA scheme, mMTC devices access the network via a timing advance (TA)-aided four-step procedure to meet massive access requirement, while the access procedure of the URLLC devices is completed in two steps coupled with the mMTC devices' access procedure to reduce latency. Furthermore, we propose an attention-based LSTM prediction model to predict the number of active URLLC devices, thereby determining the parameters of the multi-user detection algorithm to guarantee the latency and reliability access requirements of URLLC devices.We analyze the successful access probability of the LSTMH-RA scheme. Numerical results show that, compared with the benchmark schemes, the proposed LSTMH-RA scheme can significantly improve the successful access probability, and thus satisfy the diverse QoS requirements of URLLC and mMTC devices

    Not All Negatives Are Worth Attending to: Meta-Bootstrapping Negative Sampling Framework for Link Prediction

    Full text link
    The rapid development of graph neural networks (GNNs) encourages the rising of link prediction, achieving promising performance with various applications. Unfortunately, through a comprehensive analysis, we surprisingly find that current link predictors with dynamic negative samplers (DNSs) suffer from the migration phenomenon between "easy" and "hard" samples, which goes against the preference of DNS of choosing "hard" negatives, thus severely hindering capability. Towards this end, we propose the MeBNS framework, serving as a general plugin that can potentially improve current negative sampling based link predictors. In particular, we elaborately devise a Meta-learning Supported Teacher-student GNN (MST-GNN) that is not only built upon teacher-student architecture for alleviating the migration between "easy" and "hard" samples but also equipped with a meta learning based sample re-weighting module for helping the student GNN distinguish "hard" samples in a fine-grained manner. To effectively guide the learning of MST-GNN, we prepare a Structure enhanced Training Data Generator (STD-Generator) and an Uncertainty based Meta Data Collector (UMD-Collector) for supporting the teacher and student GNN, respectively. Extensive experiments show that the MeBNS achieves remarkable performance across six link prediction benchmark datasets

    Macrophage polarization states in atherosclerosis

    Get PDF
    Atherosclerosis, a chronic inflammatory condition primarily affecting large and medium arteries, is the main cause of cardiovascular diseases. Macrophages are key mediators of inflammatory responses. They are involved in all stages of atherosclerosis development and progression, from plaque formation to transition into vulnerable plaques, and are considered important therapeutic targets. Increasing evidence suggests that the modulation of macrophage polarization can effectively control the progression of atherosclerosis. Herein, we explore the role of macrophage polarization in the progression of atherosclerosis and summarize emerging therapies for the regulation of macrophage polarization. Thus, the aim is to inspire new avenues of research in disease mechanisms and clinical prevention and treatment of atherosclerosis

    A panel based on three-miRNAs as diagnostic biomarker for prostate cancer

    Get PDF
    Background: Prostate cancer (PCa) is one of the most prevalent malignancies affecting the male life cycle. The incidence and mortality of prostate cancer are also increasing every year. Detection of MicroRNA expression in serum to diagnose prostate cancer and determine prognosis is a very promising non-invasive modality.Materials and method: A total of 224 study participants were included in our study, including 112 prostate cancer patients and 112 healthy adults. The experiment consisted of three main phases, namely, the screening phase, the testing phase, and the validation phase. The expression levels of serum miRNAs in patients and healthy adults were detected using quantitative reverse transcription-polymerase chain reaction. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the diagnostic ability, specificity, and sensitivity of the candidate miRNAs.Result: Eventually, three miRNAs most relevant to prostate cancer diagnosis were selected, namely, miR-106b-5p, miR-129-1-3p and miR-381-3p. We used these three miRNAs to construct a diagnostic panel with very high diagnostic potential for prostate cancer, which had an AUC of 0.912 [95% confidence interval (CI): 0.858 to 0.950; p < 0.001; sensitivity = 91.67%; specificity = 79.76%]. In addition, the three target genes (DTNA, GJB1, and TRPC4) we searched for are also expected to be used for prostate cancer diagnosis and treatment in the future

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF
    • …
    corecore