18 research outputs found

    Occurrence and microscopic analyses of multicellular magnetotactic prokaryotes from coastal sediments in the Yellow Sea

    No full text
    Multicellular magnetotactic prokaryotes (MMPs) are a group of aggregates composed of 7-45 gram-negative cells synthesizing intracellular magnetic crystals. Although they are thought to be globally distributed, MMPs have been observed only in marine environments in America and Europe. Most MMPs share a rosette-like morphology and biomineralize iron sulfide crystals. In the present study, abundant MMPs were observed, with a density of 26 ind./cm(3), in the sediments of a coastal lagoon, Lake Yuehu, in the Yellow Sea. Optical microscopy showed that all of them were rosette shaped with a diameter of 5.5+/-0.8 mu m. Transmission electron microscopy revealed that these MMPs were composed of 10-16 ovoid cells and flagellated peritrichously. High-resolution transmission electron microscopy and energy dispersive X-ray analysis indicated that they biomineralized bullet-shaped magnetite crystals in highly organized parallel chains within which the magnetosomes were oriented in the same direction. This is the first report of MMPs from Asia and demonstrates the ubiquitous distribution of MMPs.Multicellular magnetotactic prokaryotes (MMPs) are a group of aggregates composed of 7-45 gram-negative cells synthesizing intracellular magnetic crystals. Although they are thought to be globally distributed, MMPs have been observed only in marine environments in America and Europe. Most MMPs share a rosette-like morphology and biomineralize iron sulfide crystals. In the present study, abundant MMPs were observed, with a density of 26 ind./cm(3), in the sediments of a coastal lagoon, Lake Yuehu, in the Yellow Sea. Optical microscopy showed that all of them were rosette shaped with a diameter of 5.5+/-0.8 mu m. Transmission electron microscopy revealed that these MMPs were composed of 10-16 ovoid cells and flagellated peritrichously. High-resolution transmission electron microscopy and energy dispersive X-ray analysis indicated that they biomineralized bullet-shaped magnetite crystals in highly organized parallel chains within which the magnetosomes were oriented in the same direction. This is the first report of MMPs from Asia and demonstrates the ubiquitous distribution of MMPs

    The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards.

    No full text
    Sustainable agriculture is an important global issue. The use of organic fertilizers can enhance crop yield and soil properties while restraining pests and diseases. The objective of this study was to assess the effects of long-term use of chemical and organic fertilizers on tea and rhizosphere soil properties in tea orchards. Inductively coupled plasma mass spectrometry (ICP-MS) and high-throughput sequencing technology analyses were used to investigate heavy metals content and bacterial composition in rhizosphere soils. Our results indicated that organic fertilizer treatment significantly decreased Cu, Pb and Cd contents in rhizosphere soil sample. The results also showed that treatment with organic fertilizer significantly decreased the contents of Cd, Pb and As in tea leaves. Furthermore, organic fertilizer significantly increased the amino acids content of tea and the pH of the soil. The use of organic fertilizer significantly increased in the relative abundance of Burkholderiales, Myxococcales, Streptomycetales, Nitrospirales, Ktedonobacterales, Acidobacteriales, Gemmatimonadales, and Solibacterales, and decreased the abundance of Pseudonocardiales, Frankiales, Rhizobiales, and Xanthomonadales. In conclusion, organic fertilizer can help to shape the microbial composition and recruit beneficial bacteria into the rhizosphere of tea, leading to improved tea quality and reduced heavy metals content in rhizosphere soil and tea leaves

    Analysis of MTF in TDI-CCD Subpixel Dynamic Super-Resolution Imaging by Beam Splitter

    No full text
    The subpixel dynamic imaging technique of a beam splitter is one of the most effective super-resolution imaging methods. Aiming to create a linear time delay integration charge coupled device (TDI–CCD) subpixel imaging system based on the optical assembly method, its modulation transfer function (MTF) is analyzed based on the spatial over-sampling theory. Firstly, Fourier transformation of the sampling point is used to describe the frequency domain characteristics of TDI–CCD, which transform a unit cell of the spatial sampling lattice into a bandwidth cell in the spatial–frequency domain. Considering the effects of velocity mismatch and misalignment, the best subpixel staggering position of the linear TDI–CCD pair is given. Moreover, according to the analysis of the MTF of super-resolution reconstruction results from multiple subpixel images with random spatial offsets, the condition of sampling in the limitation of the enhancement of MTF is obtained. The numerical simulation and real experimental analysis reveal results that are consistent with the theoretical model

    A mass spectrum-oriented computational method for ion mobility-resolved untargeted metabolomics

    No full text
    The high dimensionality of ion mobility (IM)-resolved metabolomics data presents a great challenge to data processing. Here, authors develop a mass spectrum-oriented bottom-up assembly algorithm and the end-to-end computational framework Met4DX for IM-resolved metabolomics

    Copper phosphide decorated g-C₃N₄ catalysts for highly efficient photocatalytic H₂ evolution

    No full text
    Designing functional heterojunctions to enhance photocatalytic hydrogen evolution is still a key challenge in the field of efficient solar energy utilization. Copper phosphides become an ideal material to serve as the cocatalysts during photocatalytic hydrogen evolution by virtue of the lower prices. In this study, we synthesized graphitic carbon nitride (g-C3N4) based catalysts loaded with copper phosphide (Cu3P, Cu97P3), which exhibit superior performance in photocatalytic H2 evolution. Ultraviolet (UV)-visible spectroscopy illustrated that the absorption of light strengthened after the loading of copper phosphide, and the time-resolved transient photoluminescence (PL) spectra showed that the separation and transfer of the photoexcited carriers greatly improved. Moreover, both copper phosphide/g-C3N4 photocatalysts exhibited a relatively high H2 evolution rate: Cu3P/g-C3N4 (maximum 343 μmol h-1 g-1), Cu97P3/g-C3N4 (162.9 μmol h-1 g-1) while copper phosphide themself exhibit no photocatalytic activity. Thus, the copper phosphides (Cu3P, Cu97P3) work as a cocatalyst during photocatalytic H2 evolution. The cycling experiments illustrated that both copper phosphide/g-C3N4 photocatalysts perform excellent stability in the photocatalytic H2 evolution. It is worth noting that while the NaH2PO2 was heated in the tube furnace for phosphorization to obtain Cu3P, the excessive PH3 could pass through the solution of CuSO4 to obtain Cu97P3 at the same time, which significantly improved the utilization of PH3 and reduced the risk of toxicity. This work could provide new strategies to design photocatalysts decorated with copper phosphide for highly efficient visible-light-driven hydrogen evolution.This work was financially supported by the National Natural Science Foundation of China (Grant No. 52103339), Natural Science Foundation of Hubei Province (Grant No. 2018CFB282) and Science Foundation of Hubei University of Technology (Grant No. BSQD2017065)

    Characterization of uncultivated magnetotactic bacteria from the sediments of Yuehu Lake, China

    No full text
    International audienceMarine magnetotactic bacteria were collected from the intertidal sediments of Yuehu Lake (China), where their abundance reached 10(3)-10(4) ind./cm(3). Diverse morphotypes of magnetotactic bacteria were observed, including cocci and oval, vibrio-, spirillum-, rod-, elliptical-, handle- and bar-shaped forms. The magnetococci were the most abundant, and had flagella arranged in parallel within a bundle. The majority of magnetosomes were arranged in one, two or multiple chains, although irregular arrangements were also evident. All the results of high-resolution transmission electron microscopy (HRTEM) analysis show that magnetosome crystals were composed of Fe3O4, and their morphology was specific to particular cell morphotypes. By the 16S rRNA gene sequence analysis, we found fourteen operational taxonomic units (OTUs) which were related to magnetotactic bacteria. Among these, thirteen belonged to the Alphaproteobacteria and one to the Gammaproteobacteria. Compared with known axenic and uncultured marine magnetotactic bacteria, the 16S rRNA gene sequences of most magnetotactic bacteria collected from the Yuehu Lake exhibited sequence identities ranging from 90.1% to 96.2% (\textless 97%). The results indicate that microbial communities containing previously unidentified magnetotactic bacteria occur in the Yuehu Lake

    Flavivirus prM interacts with MDA5 and MAVS to inhibit RLR antiviral signaling

    No full text
    Abstract Background Vector-borne flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), pose a growing threat to public health worldwide, and have evolved complex mechanisms to overcome host antiviral innate immunity. However, the underlying mechanisms of flavivirus structural proteins to evade host immune response remain elusive. Results We showed that TBEV structural protein, pre-membrane (prM) protein, could inhibit type I interferon (IFN-I) production. Mechanically, TBEV prM interacted with both MDA5 and MAVS and interfered with the formation of MDA5-MAVS complex, thereby impeding the nuclear translocation and dimerization of IRF3 to inhibit RLR antiviral signaling. ZIKV and WNV prM was also demonstrated to interact with both MDA5 and MAVS, while dengue virus serotype 2 (DENV2) and YFV prM associated only with MDA5 or MAVS to suppress IFN-I production. In contrast, JEV prM could not suppress IFN-I production. Overexpression of TBEV and ZIKV prM significantly promoted the replication of TBEV and Sendai virus. Conclusion Our findings reveal the immune evasion mechanisms of flavivirus prM, which may contribute to understanding flavivirus pathogenicity, therapeutic intervention and vaccine development
    corecore