2,529 research outputs found

    Anisotropic strain enhanced hydrogen solubility in bcc metals: the independence on the sign of strain

    Get PDF
    pre-printWhen an impurity is doped in a solid, it inevitably induces a local stress, tending to expand or contract the lattice. Consequently, strain can be applied to change the solubility of impurity in a solid. Generally, the solubility responds to strain ‘‘monotonically,'' increasing (decreasing) with the tensile (compressive) strain if the impurity induces a compressive stress or vice versa. Using first-principles calculations, however, we discovered that the H solubility can be enhanced by anisotropic strain in some bcc metals, almost independent of the sign of strain. This anomalous behavior is found to be caused by a continuous change of H location induced by anisotropic strain. Our finding suggests a cascading effect of H bubble formation in bcc metals: the H solution leads to H bubble formation that induces anisotropic strain that in turn enhances H solubility to further facilitate bubble growth

    Efficient polarization entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity

    Full text link
    We present a way for entanglement purification based on two parametric down-conversion (PDC) sources with cross-Kerr nonlinearities. It is comprised of two processes. The first one is a primary entanglement purification protocol for PDC sources with nondestructive quantum nondemolition (QND) detectors by transferring the spatial entanglement of photon pairs to their polarization. In this time, the QND detectors act as the role of controlled-not (CNot) gates. Also they can distinguish the photon number of the spatial modes, which provides a good way for the next process to purify the entanglement of the photon pairs kept more. In the second process for entanglement purification, new QND detectors are designed to act as the role of CNot gates. This protocol has the advantage of high yield and it requires neither CNot gates based on linear optical elements nor sophisticated single-photon detectors, which makes it more convenient in practical applications.Comment: 8 pages, 7 figure
    • …
    corecore