41 research outputs found

    An Experimental Novel Study: Angelica sinensis

    Get PDF
    With laminectomy being widely accepted as the treatment for lumbar disorders, epidural fibrosis (EF) is a common complication for both the patients and the surgeons alike. Currently, EF is thought to cause recurrent postoperative pain after laminectomy or after discectomy. Angelica sinensis is a traditional Chinese medicine which has shown anti-inflammatory, antifibrotic, and antiproliferative properties. The object of this study was to investigate the effects of Angelica sinensis on the prevention of post-laminectomy EF formation in a rat model. A controlled double-blinded study was conducted in sixty healthy adult Wistar rats that underwent laminectomy at the L1-L2 levels. They were divided randomly into 3 groups according to the treatment method, with 20 in each group: (1) Angelica sinensis treatment group, (2) saline treatment group, and (3) sham group (laminectomy without treatment). All rats were euthanized humanely 4 weeks after laminectomy. The hydroxyproline content, Rydell score, vimentin cells density, fibroblasts density, inflammatory cells density, and inflammatory factors expressions all suggested better results in Angelica sinensis group than the other two groups. Topical application of Angelica sinensis could inhibit fibroblasts proliferation and TGF-β1 and IL-6 expressions and prevent epidural scar adhesion in postlaminectomy rat model

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Current situation and development of facial prosthesis

    No full text
    Facial prostheses have developed significantly in the last 10 years, especially between 2016 and 2021. This development is mainly due to the great progress made in the fields of biocompatible materials, digital technology, and three-dimensional printing technology, which provides guarantee for low allergy, high biosimulation, comfort, and satisfactory usability. Treatment teams typically consist of plastic surgeons, material experts, engineers, and computer scientists who have extensive clinical experience. These teams successfully implement an integrated, multidisciplinary model by prioritizing the reasonable expectations of both the physician and patient, leading to improved patient satisfaction and compliance with prosthetic constraints. This study aimed to review the concept, development status, existing problems, and future of facial prosthesis

    Determination of Sulfonamides in Chicken Muscle by Pulsed Direct Current Electrospray Ionization Tandem Mass Spectrometry

    No full text
    A simple and rapid approach for the simultaneous detection of trace amounts of six sulfonamides in chicken muscle was developed using pulsed direct current electrospray ionization tandem mass spectrometry (pulsed-dc ESI-MS/MS). The pretreatment of chicken muscle samples consisted of two steps: acetonitrile extraction and <i>n</i>-hexane delipidation. Sulfonamides do not need to be derivatized or chromatographed prior to pulsed-dc ESI-MS/MS. The factors affecting the performance of pulsed-dc ESI-MS/MS were studied. Under optimum conditions, the quantitative performance of pulsed-dc ESI-MS/MS was validated according to European Union Decision 2002/657/EC, and the sensitivity of pulsed-dc ESI-MS/MS was 3 times higher than that of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The limits of detection obtained by pulsed-dc ESI-MS/MS were in the range of 0.07–0.11 μg/kg. The proposed method was simple, rapid, and sensitive, and was successfully used for quantitation and rapid screening of sulfonamides in real chicken muscle samples

    On-demand generation of peroxynitrite from an integrated two-dimensional system for enhanced tumor therapy

    No full text
    Nanosystem-mediated tumor radiosensitization strategy combining the features of X-ray with infinite penetration depth and high atomic number elements shows considerable application potential in clinical cancer therapy. However, it is difficult to achieve satisfactory anticancer efficacy using clinical radiotherapy for the majority of solid tumors due to the restrictions brought about by the tumor hypoxia, insufficient DNA damage, and rapid DNA repair during and after treatment. Inspired by the complementary advantages of nitric oxide (NO) and X-ray-induced photodynamic therapy, we herein report a two-dimensional nanoplatform by the integration of the NO donor-modified LiYF4:Ce scintillator and graphitic carbon nitride nanosheets for on-demand generation of highly cytotoxic peroxynitrite (ONOO–). By simply adjusting the Ce3+ doping content, the obtained nanoscintillator can realize high radioluminescence, activating photosensitive materials to simultaneously generate NO and superoxide radical for the formation of ONOO– in the tumor. Obtained ONOO– effectively amplifies therapeutic efficacy of radiotherapy by directly inducing mitochondrial and DNA damage, overcoming hypoxia-associated radiation resistance. The level of glutamine synthetase (GS) is downregulated by ONOO–, and the inhibition of GS delays DNA damage repair, further enhancing radiosensitivity. This work establishes a combinatorial strategy of ONOO– to overcome the major limitations of radiotherapy and provides insightful guidance to clinical radiotherapy.Agency for Science, Technology and Research (A*STAR)Submitted/Accepted versionFinancial support from the National Natural Science Foundation of China (51972075, 51972076, and 51772059), the Natural Science Foundation of Shandong Province (ZR2019ZD29), the Natural Science Foundation of Heilongjiang Province (YQ2019E014), the Postdoctoral Scientific Research Developmental Fund (LBH-Q18034), and the Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities (3072020GIP1016) are greatly acknowledged. This research is also supported by the Singapore Agency for Science, Technology and Research (A*STAR) AME IRG grant (A20E5c0081)

    Identification and Verification of Candidate Genes Regulating Neural Stem Cells Behavior Under Hypoxia

    No full text
    Background/Aims: Neural stem cells (NSCs) reside in a hypoxic environment, and hypoxia plays an important role in their development and differentiation. This study aimed to explore the underlying mechanisms by which hypoxia affects NSC behavior. Methods: In the current study, we downloaded the gene expression dataset GSE68572 and identified the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in hypoxic and normoxic NSCs. Subsequently, we analyzed these data using a combined bioinformatics approach and predicted the microRNAs (miRNAs) targeting the key gene using miRNA databases. Quantitative real-time PCR (qRT-PCR) was used to validate the expression of the top five DEGs. Results: In total, 1347 genes were identified as DEGs. We identified the predominant gene ontology categories and Kyoto Encyclopedia of Genes and Genomes pathways that were significantly over-represented in the hypoxic NSCs. A protein–protein interaction network he identification of miRNAs and their putative targets may offer new diagnostic and therapeutic strategies for liver cancer the top 10 core genes. Vascular endothelial growth factor A (VEGFA) had the highest degree and may be the key gene concerning NSC behavior under hypoxia. Further validation of the top five DEGs by qRT-PCR demonstrated that four DEGs were significantly higher and one DEG was significantly lower in the hypoxic group than in the control group. Seven miRNAs were predicted and proved to target VEGFA. Conclusion: This preliminary study can prompt the understanding of the molecular mechanisms by which hypoxia has an impact on NSC behavior and can help to optimize stem cell therapies for central nervous system injuries and diseases

    N1-Methyladenosine modification of mRNA regulates neuronal gene expression and oxygen glucose deprivation/reoxygenation induction

    No full text
    Abstract N1-Methyladenosine (m1A) is an abundant modification of transcripts, plays important roles in regulating mRNA structure and translation efficiency, and is dynamically regulated under stress. However, the characteristics and functions of mRNA m1A modification in primary neurons and oxygen glucose deprivation/reoxygenation (OGD/R) induced remain unclear. We first constructed a mouse cortical neuron OGD/R model and then used methylated RNA immunoprecipitation (MeRIP) and sequencing technology to demonstrate that m1A modification is abundant in neuron mRNAs and dynamically regulated during OGD/R induction. Our study suggests that Trmt10c, Alkbh3, and Ythdf3 may be m1A-regulating enzymes in neurons during OGD/R induction. The level and pattern of m1A modification change significantly during OGD/R induction, and differential methylation is closely associated with the nervous system. Our findings show that m1A peaks in cortical neurons aggregate at both the 5’ and 3’ untranslated regions. m1A modification can regulate gene expression, and peaks in different regions have different effects on gene expression. By analysing m1A-seq and RNA-seq data, we show a positive correlation between differentially methylated m1A peaks and gene expression. The correlation was verified by using qRT-PCR and MeRIP-RT-PCR. Moreover, we selected human tissue samples from Parkinson’s disease (PD) and Alzheimer’s disease (AD) patients from the Gene Expression Comprehensive (GEO) database to analyse the selected differentially expressed genes (DEGs) and differential methylation modification regulatory enzymes, respectively, and found similar differential expression results. We highlight the potential relationship between m1A modification and neuronal apoptosis following OGD/R induction. Furthermore, by mapping mouse cortical neurons and OGD/R-induced modification characteristics, we reveal the important role of m1A modification in OGD/R and gene expression regulation, providing new ideas for research on neurological damage

    Effectiveness of Teriparatide on Fracture Healing: A Systematic Review and Meta-Analysis

    No full text
    <div><p>Purpose</p><p>Nowadays, the efficacy of teriparatide in treating osteoporosis was widely accepted, but the discussion about using teriparatide to enhance fracture healing hasn’t come to an agreement. This meta-analysis was conducted to evaluate the effectiveness of teriparatide for fracture healing.</p><p>Methods</p><p>We searched PubMed, the Cochrane Library, and Embase in August 2016 for randomized controlled trials (RCTs) which concerned the treatment of teriparatide for fracture healing.</p><p>Results</p><p>Finally, a total of 380 patients were randomly assigned in the 5 trials included in this meta-analysis. There was a significant effectiveness with regards to function improvement in patients following fracture, however, there was no significant effectiveness with regards to time of radiographic fracture healing, fracture healing rate and reduction in pain.</p><p>Conclusions</p><p>This analysis showed that administration of teriparatide following fracture lacked the effectiveness for fracture healing. Moreover, teriparatide administration had no apparent adverse effects. These results should be interpreted with caution because of some clear limitations. If we want to confirm whether teriparatide improves fracture healing, more high-quality randomized controlled trials are needed.</p></div
    corecore