96,421 research outputs found

    Spin-bias driven magnetization reversal and nondestructive detection in a single molecular magnet

    Get PDF
    The magnetization reversal in a single molecular magnet (SMM) weakly coupled to an electrode with spin-dependent splitting of chemical potentials (spin bias) is theoretically investigated by means of the rate equation. A microscopic mechanism for the reversal is demonstrated by the avalanche dynamics at the reversal point. The magnetization as a function of the spin bias shows hysteresis loops tunable by the gate voltage and varying with temperature. The nondestructive measurement to the orientation of giant spin in SMM is presented by measuring the fully polarized electric current in the response to a small spin bias. For Mn12_{12}ac molecule, its small transverse anisotropy only slightly violates the results above. The situation when there is an angle between the easy axis of the SMM and the spin quantization direction of the electrode is also studied.Comment: 17 pages, 12 figure

    Hardcore bosons on checkerboard lattices near half filling: geometric frustration, vanishing charge order and fractional phase

    Full text link
    We study a spinless hardcore boson model on checkerboard lattices by Green function Monte Carlo method. At half filling, the ground state energy is obtained up to 28×2828\times 28 lattice and extrapolated to infinite size, the staggered pseudospin magnetization is found to vanish in the thermodynamic limit. Thus the (π,π)(\pi,\pi) charge order is absent in this system. Away from half filling, two defects induced by each hole (particle) may carry fractional charge (±e/2\pm e/2). For one hole case, we study how the defect-defect correlation changes with t/Jt/J, which is the ratio between the hopping integral and cyclic exchange, equals to V/2tV/2t when VtV\gg t. Moreover, we argue that these fractional defects may propagate independently when the concentration of holes (or defects) is large enough

    Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence

    Full text link
    A self-consistent renormalization (RG) scheme has been applied to nonhelical magnetohydrodynamic turbulence with normalized cross helicity σc=0\sigma_c =0 and σc1\sigma_c \to 1. Kolmogorov's 5/3 powerlaw is assumed in order to compute the renormalized parameters. It has been shown that the RG fixed point is stable for ddc2.2d \ge d_c \approx 2.2. The renormalized viscosity ν\nu^* and resistivity η\eta^* have been calculated, and they are found to be positive for all parameter regimes. For σc=0\sigma_c=0 and large Alfv\'{e}n ratio (ratio of kinetic and magnetic energies) rAr_A, ν=0.36\nu^*=0.36 and η=0.85\eta^*=0.85. As rAr_A is decreased, ν\nu^* increases and η\eta^* decreases, untill rA0.25r_A \approx 0.25 where both ν\nu^* and η\eta^* are approximately zero. For large dd, both ν\nu^* and η\eta^* vary as d1/2d^{-1/2}. The renormalized parameters for the case σc1\sigma_c \to 1 are also reported.Comment: 19 pages REVTEX, 3 ps files (Phys. Plasmas, v8, 3945, 2001

    On Horizontal and Vertical Separation in Hierarchical Text Classification

    Get PDF
    Hierarchy is a common and effective way of organizing data and representing their relationships at different levels of abstraction. However, hierarchical data dependencies cause difficulties in the estimation of "separable" models that can distinguish between the entities in the hierarchy. Extracting separable models of hierarchical entities requires us to take their relative position into account and to consider the different types of dependencies in the hierarchy. In this paper, we present an investigation of the effect of separability in text-based entity classification and argue that in hierarchical classification, a separation property should be established between entities not only in the same layer, but also in different layers. Our main findings are the followings. First, we analyse the importance of separability on the data representation in the task of classification and based on that, we introduce a "Strong Separation Principle" for optimizing expected effectiveness of classifiers decision based on separation property. Second, we present Hierarchical Significant Words Language Models (HSWLM) which capture all, and only, the essential features of hierarchical entities according to their relative position in the hierarchy resulting in horizontally and vertically separable models. Third, we validate our claims on real-world data and demonstrate that how HSWLM improves the accuracy of classification and how it provides transferable models over time. Although discussions in this paper focus on the classification problem, the models are applicable to any information access tasks on data that has, or can be mapped to, a hierarchical structure.Comment: Full paper (10 pages) accepted for publication in proceedings of ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR'16

    Active Semi-Supervised Learning Using Sampling Theory for Graph Signals

    Full text link
    We consider the problem of offline, pool-based active semi-supervised learning on graphs. This problem is important when the labeled data is scarce and expensive whereas unlabeled data is easily available. The data points are represented by the vertices of an undirected graph with the similarity between them captured by the edge weights. Given a target number of nodes to label, the goal is to choose those nodes that are most informative and then predict the unknown labels. We propose a novel framework for this problem based on our recent results on sampling theory for graph signals. A graph signal is a real-valued function defined on each node of the graph. A notion of frequency for such signals can be defined using the spectrum of the graph Laplacian matrix. The sampling theory for graph signals aims to extend the traditional Nyquist-Shannon sampling theory by allowing us to identify the class of graph signals that can be reconstructed from their values on a subset of vertices. This approach allows us to define a criterion for active learning based on sampling set selection which aims at maximizing the frequency of the signals that can be reconstructed from their samples on the set. Experiments show the effectiveness of our method.Comment: 10 pages, 6 figures, To appear in KDD'1

    Melt-growth dynamics in CdTe crystals

    Full text link
    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt \rightarrow crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical method

    Distribution of equilibrium free energies in a thermodynamic system with broken ergodicity

    Full text link
    At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N1023N\sim 10^{23} interacting particles may split into an exponential number Ωsexp(const×N)\Omega_s \sim \exp({\rm const} \times N) of ergodic sub-spaces (thermodynamic states). Previous theoretical studies assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponential decay. Here we show that these assumptions are not necessarily valid. For some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by {\em excited} thermodynamic states. This work will help improving our understanding of the equilibrium statistical mechanics of spin-glasses and other complex systems.Comment: 7 pages, 2 figure
    corecore