38 research outputs found

    Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes

    Full text link
    Two-dimensional (2D) transition metal carbides and nitrides (MXenes) are a large family of materials actively studied for various applications, especially in the field of energy storage. MXenes are commonly synthesized by etching the layered ternary compounds, MAX phases. We demonstrate a direct synthetic route for scalable and atom-economic synthesis of MXenes, including phases that have not been synthesized from MAX phases, by the reactions of metals and metal halides with graphite, methane, or nitrogen. The direct synthesis enables chemical vapor deposition (CVD) growth of MXene carpets and complex spherulite-like morphologies that form through buckling and release of MXene carpet to expose fresh surface for further reaction. The directly synthesized MXenes showed excellent energy storage capacity for Li-ion intercalation.Comment: 9 pages, 4 figure

    Hybrid organic-inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces

    Full text link
    Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) show impressive performance in applications, such as supercapacitors, batteries, electromagnetic interference shielding, or electrocatalysis. These materials combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, and surface-engineered MXenes represent an ideal platform for fundamental and applied studies of interfaces in 2D functional materials. A natural step in structural engineering of MXene compounds is the development and understanding of MXenes with various organic functional groups covalently bound to inorganic 2D sheets. Such hybrid structures have the potential to unite the tailorability of organic molecules with the unique electronic properties of inorganic 2D solids. Here, we introduce a new family of hybrid MXenes (h-MXenes) with amido- and imido-bonding between organic and inorganic parts. The description of h-MXene structure requires an intricate mix of concepts from the fields of coordination chemistry, self-assembled monolayers (SAMs) and surface science. The optical properties of h-MXenes reveal coherent coupling between the organic and inorganic components. h-MXenes also show superior stability against hydrolysis in aqueous solutions.Comment: 10 pages, 4 figure

    OsbZIP18, a Positive Regulator of Serotonin Biosynthesis, Negatively Controls the UV-B Tolerance in Rice

    Get PDF
    Serotonin (5-hydroxytryptamine) plays an important role in many developmental processes and biotic/abiotic stress responses in plants. Although serotonin biosynthetic pathways in plants have been uncovered, knowledge of the mechanisms of serotonin accumulation is still limited, and no regulators have been identified to date. Here, we identified the basic leucine zipper transcription factor OsbZIP18 as a positive regulator of serotonin biosynthesis in rice. Overexpression of OsbZIP18 strongly induced the levels of serotonin and its early precursors (tryptophan and tryptamine), resulting in stunted growth and dark-brown phenotypes. A function analysis showed that OsbZIP18 activated serotonin biosynthesis genes (including tryptophan decarboxylase 1 (OsTDC1), tryptophan decarboxylase 3 (OsTDC3), and tryptamine 5-hydroxylase (OsT5H)) by directly binding to the ACE-containing or G-box cis-elements in their promoters. Furthermore, we demonstrated that OsbZIP18 is induced by UV-B stress, and experiments using UV-B radiation showed that transgenic plants overexpressing OsbZIP18 exhibited UV-B stress-sensitive phenotypes. Besides, exogenous serotonin significantly exacerbates UV-B stress of OsbZIP18_OE plants, suggesting that the excessive accumulation of serotonin may be responsible for the sensitivity of OsbZIP18_OE plants to UV-B stress. Overall, we identified a positive regulator of serotonin biosynthesis and demonstrated that UV-B-stress induced serotonin accumulation, partly in an OsbZIP18-dependent manner

    Organic–inorganic metal halide hybrids beyond perovskites

    No full text
    Organic–inorganic metal halide hybrids have emerged as new generation functional materials with exceptional structure and property tunability for a variety of applications. Besides the most investigated ABX3 metal halide perovskites, a variety of hybrids consisting of a wide range of organic cations and metal halide anions have been developed and studied recently. Here, we provide an overview of these new materials possessing various crystallographic structures, including double perovskites, low dimensional hybrids, and other perovskite-related materials. We discuss their syntheses, functional properties, and optoelectronic applications. Challenges and opportunities are then laid out for these hybrid materials beyond perovskites

    Simulation and Experimental Analysis of Camellia oleifera Fruit Shedding Based on Finite Element Explicit Dynamics

    Get PDF
    As an important oil crop in China and the world, the harvesting problem of Camellia oleifera has attracted much attention. Research is needed on mechanical characteristics of harvesting equipment. Explicit dynamics was used to establish a finite element model under a simulated load response to the branch-pedicel-fruit system of C. oleifera to predict the fracture process at the pedicel junction. The separation mechanism of C. oleifera fruit was determined by measuring the constitutive parameters of fruit branches and pedicels and conducting separation experiments and explicit dynamics simulations on different hanging fruits. The maximum stress at the fruit pedicel was 1.14 MPa, and the goodness of fit between the simulation and experiment was approximately 89.5%, indicating that the branch-pedicel-fruit finite element model could accurately reflect the fruit shedding process and that the pedicel diameter was correlated positively with the separation force. This study provides technical parameters for the optimized design of existing C. oleifera harvesting equipment

    Integrative Metabolomic and Transcriptomic Analyses Reveal Metabolic Changes and Its Molecular Basis in Rice Mutants of the Strigolactone Pathway

    No full text
    Plants have evolved many metabolites to meet the demands of growth and adaptation. Although strigolactones (SLs) play vital roles in controlling plant architecture, their function in regulating plant metabolism remains elusive. Here we report the integrative metabolomic and transcriptomic analyses of two rice SL mutants, d10 (a biosynthesis mutant) and d14 (a perception mutant). Both mutants displayed a series of metabolic and transcriptional alterations, especially in the lipid, flavonoid, and terpenoid pathways. Levels of several diterpenoid phytoalexins were substantially increased in d10 and d14, together with the induction of terpenoid gene cluster and the corresponding upstream transcription factor WRKY45, an established determinant of plant immunity. The fact that WRKY45 is a target of IPA1, which acted as a downstream transcription factor of SL signaling, suggests that SLs contribute to plant defense through WRKY45 and phytoalexins. Moreover, our data indicated that SLs may modulate rice metabolism through a vast number of clustered or tandemly duplicated genes. Our work revealed a central role of SLs in rice metabolism. Meanwhile, integrative analysis of the metabolome and transcriptome also suggested that SLs may contribute to metabolite-associated growth and defense

    Hybrid organic-inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces

    No full text
    Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) show impressive performance in applications, such as supercapacitors, batteries, electromagnetic interference shielding, or electrocatalysis. These materials combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, and surface-engineered MXenes represent an ideal platform for fundamental and applied studies of interfaces in 2D functional materials. A natural step in structural engineering of MXene compounds is the development and understanding of MXenes with various organic functional groups covalently bound to inorganic 2D sheets. Such hybrid structures have the potential to unite the tailorability of organic molecules with the unique electronic properties of inorganic 2D solids. Here, we introduce a new family of hybrid MXenes (h-MXenes) with amido- and imido-bonding between organic and inorganic parts. The description of h-MXene structure requires an intricate mix of concepts from the fields of coordination chemistry, self-assembled monolayers (SAMs) and surface science. The optical properties of h-MXenes reveal coherent coupling between the organic and inorganic components. h-MXenes also show superior stability against hydrolysis in aqueous solutions.This is a pre-print of the article Zhou, Chenkun, Di Wang, Francisco Lagunas, Benjamin Atterberry, Ming Lei, Huicheng Hu, Zirui Zhou et al. "Hybrid organic-inorganic two-dimensional metal carbide MXenes with amido-and imido-terminated surfaces." arXiv preprint arXiv:2305.17566 (2023). DOI: 10.48550/arXiv.2305.17566, Attribution 4.0 International (CC BY 4.0). Copyright 2023 The Authors. Posted with permission

    Manganese-Doped One-Dimensional Organic Lead Bromide Perovskites with Bright White Emissions

    No full text
    Single-component white-emitting phosphors are highly promising to simplify the fabrication of optically pumped white light-emitting diodes. To achieve white emission, precise control of the excited state dynamics is required for a single-component system to generate emissions with different energies in the steady state. Here, we report a new class of white phosphors based on manganese (Mn)-doped one-dimensional (1D) organic lead bromide perovskites. The bright white emission is the combination of broadband blue emission from the self-trapped excited states of the 1D perovskites and red emission from the doped Mn<sup>2+</sup> ions. Because of the indirect nature of the self-trapped excited states in 1D perovskites, there is no energy transfer from these states to the Mn<sup>2+</sup> ions, resulting in an efficient dual emission. As compared to the pristine 1D perovskites with bluish-white emission, these Mn-doped 1D perovskites exhibit much higher color rendering index of up to 87 and photoluminescence quantum efficiency of up to 28%
    corecore