1,533 research outputs found
Nonadiabatic quantum pumping in mesoscopic nanostructures
We consider a nonadiabatic quantum pumping phenomena in a ballistic narrow
constriction. The pumping is induced by a potential that has both spatial and
temporal periodicity characterized by and . In the zero frequency
() limit, the transmission through narrow constriction exhibits
valley structures due to the opening up of energy gaps in the pumping region --
a consequence of the periodicity. These valley structures remain robust in
the regime of finite , while their energies of occurrence are shifted
by about . The direction of these energy shifts depend on the
directions of both the phase-velocity of the pumping potential and the
transmitting electrons. This frequency dependent feature of the valley
structures gives rise to both the asymmetry in the transmission coefficients
and the pumping current. An experimental setup is suggested for a possible
observation of our nonadiabatic quantum pumping findings.Comment: 4 pages, 2 figure
A Coverage Criterion for Spaced Seeds and its Applications to Support Vector Machine String Kernels and k-Mer Distances
Spaced seeds have been recently shown to not only detect more alignments, but
also to give a more accurate measure of phylogenetic distances (Boden et al.,
2013, Horwege et al., 2014, Leimeister et al., 2014), and to provide a lower
misclassification rate when used with Support Vector Machines (SVMs) (On-odera
and Shibuya, 2013), We confirm by independent experiments these two results,
and propose in this article to use a coverage criterion (Benson and Mak, 2008,
Martin, 2013, Martin and No{\'e}, 2014), to measure the seed efficiency in both
cases in order to design better seed patterns. We show first how this coverage
criterion can be directly measured by a full automaton-based approach. We then
illustrate how this criterion performs when compared with two other criteria
frequently used, namely the single-hit and multiple-hit criteria, through
correlation coefficients with the correct classification/the true distance. At
the end, for alignment-free distances, we propose an extension by adopting the
coverage criterion, show how it performs, and indicate how it can be
efficiently computed.Comment: http://online.liebertpub.com/doi/abs/10.1089/cmb.2014.017
Recommended from our members
Interconnected Self-Propagating Photopolymer Waveguides: An Alternative to Stereolithography for Rapid Formation of Lattice-Based Open-Cellular Materials
Recently, a new technique has been developed to create unique open-cellular materials with
micro-scale truss, or lattice features ranging from tens to hundreds of microns. These materials
are formed from a three-dimensional, interconnected array of self-propagating photopolymer
waveguides. By utilizing this self-propagating effect, three-dimensional open-cellular polymer
materials can be formed in seconds. In addition, intrinsic to the process is the ability to control
specific micro-lattice parameters which ultimately affect the bulk material properties. Unlike
stereolithography, this new fabrication technique is rapid (~ minutes to form an entire part) and
relies on a single two-dimensional exposure surface to form three-dimensional structures
(thickness > 25 mm possible). This combination of speed and planar scalability opens the
possibility for large-scale mass manufacturing. The utility of these new materials range from
lightweight energy absorbing structures to thermal management materials to bio-scaffolds.Mechanical Engineerin
CHO genome mining for synthetic promoter design
Synthetic promoters are an attractive alternative for use in mammalian hosts such as CHO cells as they can be designed de novo with user-defined functionalities. In this study, we describe and validate a method for bioprocess-directed design of synthetic promoters utilizing CHO genomic sequence information. We designed promoters with two objective features, (i) constitutive high-level recombinant gene transcription, and (ii) upregulated transcription under mild hypothermia or late-stage culture. CHO genes varying in transcriptional activity were selected based on a comparative analysis of RNA-Seq transcript levels in normal and biphasic cultures in combination with estimates of mRNA half-life from published genome scale datasets. Discrete transcription factor regulatory elements (TFREs) upstream of these genes were informatically identified and functionally screened in vitro to identify a subset of TFREs with the potential to support high activity recombinant gene transcription during biphasic cell culture processes. Two libraries of heterotypic synthetic promoters with varying TFRE combinations were then designed in silico that exhibited a maximal 2.5-fold increase in transcriptional strength over the CMV-IE promoter after transient transfection into host CHO-K1 cells. A subset of synthetic promoters was then used to create stable transfectant pools using CHO-K1 cells under glutamine synthetase selection. Whilst not achieving the maximal 2.5-fold increase in productivity over stable pools harboring the CMV promoter, all stably transfected cells utilizing synthetic promoters exhibited increased reporter production - up to 1.6-fold that of cells employing CMV, both in the presence or absence of intron A immediately downstream of the promoter. The increased productivity of stably transfected cells harboring synthetic promoters was maintained during fed-batch culture, with or without a transition to mild hypothermia at the onset of stationary phase. Our data exemplify that it is important to consider both host cell and intended bioprocess contexts as design criteria in the de novo construction of synthetic genetic parts for mammalian cell engineering
Proton strangeness form factors in (4,1) clustering configurations
We reexamine a recent result within a nonrelativistic constituent quark model
(NRCQM) which maintains that the uuds\bar s component in the proton has its
uuds subsystem in P state, with its \bar s in S state (configuration I). When
the result are corrected, contrary to the previous result, we find that all the
empirical signs of the form factors data can be described by the lowest-lying
uuds\bar s configuration with \bar s in P state that has its uuds subsystem in
state (configuration II). Further, it is also found that the removal of the
center-of-mass (CM) motion of the clusters will enhance the contributions of
the transition current considerably. We also show that a reasonable description
of the existing form factors data can be obtained with a very small probability
P_{s\bar s}=0.025% for the uuds\bar s component. We further see that the
agreement of our prediction with the data for G_A^s at low-q^2 region can be
markedly improved by a small admixture of configuration I. It is also found
that by not removing CM motion, P_{s\bar s} would be overestimated by about a
factor of four in the case when transition dominates over direct currents.
Then, we also study the consequence of a recent estimate reached from analyzing
the existing data on quark distributions that P_{s\bar s} lies between 2.4-2.9%
which would lead to a large size for the five-quark (5q) system, as well as a
small bump in both G^s_E+\eta G^s_M and G^s_E in the region of q^2 =< 0.1
GeV^2.Comment: Prepared for The Fifth Asia-Pacific Conference on Few-Body Problems
in Physics 2011 in Seoul, South Korea, 22-26 August 201
Investigating the topology of interacting networks - Theory and application to coupled climate subnetworks
Network theory provides various tools for investigating the structural or
functional topology of many complex systems found in nature, technology and
society. Nevertheless, it has recently been realised that a considerable number
of systems of interest should be treated, more appropriately, as interacting
networks or networks of networks. Here we introduce a novel graph-theoretical
framework for studying the interaction structure between subnetworks embedded
within a complex network of networks. This framework allows us to quantify the
structural role of single vertices or whole subnetworks with respect to the
interaction of a pair of subnetworks on local, mesoscopic and global
topological scales.
Climate networks have recently been shown to be a powerful tool for the
analysis of climatological data. Applying the general framework for studying
interacting networks, we introduce coupled climate subnetworks to represent and
investigate the topology of statistical relationships between the fields of
distinct climatological variables. Using coupled climate subnetworks to
investigate the terrestrial atmosphere's three-dimensional geopotential height
field uncovers known as well as interesting novel features of the atmosphere's
vertical stratification and general circulation. Specifically, the new measure
"cross-betweenness" identifies regions which are particularly important for
mediating vertical wind field interactions. The promising results obtained by
following the coupled climate subnetwork approach present a first step towards
an improved understanding of the Earth system and its complex interacting
components from a network perspective
Photoemission Spectroscopy from Inhomogeneous Models of Cuprates
We investigate the electronic dynamics in the underdoped cuprates focusing on
the effects of one-dimensional charge stripes. We address recent experimental
Angular-Resolved Photoemission Spectra results on
(LaNdSr)CuO. We find that various inhomogeneous
models can account for the distribution of quasiparticle weights close to
momentum and symmetry related points. The observed flat
dispersion region around the same point can only be addressed by
certain classes of those inhomogeneous models which locally break spin
symmetry. Homogeneous models including hopping elements up to second neighbors
cannot reproduce the experimental quasiparticle weight, since most of it is
centered around .Comment: 5 pages, color figure
Search for Photoproduction of Axionlike Particles at GlueX
We present a search for axionlike particles, a, produced in photon-proton collisions at a center-of-mass energy of approximately 4 GeV, focusing on the scenario where the a-gluon coupling is dominant. The search uses a → γγ and a → π+π−π0 decays, and a data sample corresponding to an integrated luminosity of 168 pb−1 collected with the GlueX detector. The search for a → γγ decays is performed in the mass range of 180 \u3c ma \u3c480 MeV, while the search for a → π+π−π0 decays explores the 600 \u3c ma \u3c 720 MeV region. No evidence for a signal is found, and 90% confidence-level exclusion limits are placed on the a-gluon coupling strength. These constraints are the most stringent to date over much of the mass ranges considered
Measuring Black Hole Spin using X-ray Reflection Spectroscopy
I review the current status of X-ray reflection (a.k.a. broad iron line)
based black hole spin measurements. This is a powerful technique that allows us
to measure robust black hole spins across the mass range, from the stellar-mass
black holes in X-ray binaries to the supermassive black holes in active
galactic nuclei. After describing the basic assumptions of this approach, I lay
out the detailed methodology focusing on "best practices" that have been found
necessary to obtain robust results. Reflecting my own biases, this review is
slanted towards a discussion of supermassive black hole (SMBH) spin in active
galactic nuclei (AGN). Pulling together all of the available XMM-Newton and
Suzaku results from the literature that satisfy objective quality control
criteria, it is clear that a large fraction of SMBHs are rapidly-spinning,
although there are tentative hints of a more slowly spinning population at high
(M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of
the spins of stellar-mass black holes in X-ray binaries. In general,
reflection-based and continuum-fitting based spin measures are in agreement,
although there remain two objects (GROJ1655-40 and 4U1543-475) for which that
is not true. I end this review by discussing the exciting frontier of
relativistic reverberation, particularly the discovery of broad iron line
reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and
MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk
reflection, this detection of reverberation demonstrates that future large-area
X-ray observatories such as LOFT will make tremendous progress in studies of
strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The
Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds
a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the
referencing of the discovery of soft lags in 1H0707-495 (which were in fact
first reported in Fabian et al. 2009
Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library
10.1186/1755-8794-5-34BMC Medical Genomics5
- …