16 research outputs found

    AI/ML for Beam Management in 5G-Advanced

    Full text link
    In beamformed wireless cellular systems such as 5G New Radio (NR) networks, beam management (BM) is a crucial operation. In the second phase of 5G NR standardization, known as 5G-Advanced, which is being vigorously promoted, the key component is the use of artificial intelligence (AI) based on machine learning (ML) techniques. AI/ML for BM is selected as a representative use case. This article provides an overview of the AI/ML for BM in 5G-Advanced. The legacy non-AI and prime AI-enabled BM frameworks are first introduced and compared. Then, the main scope of AI/ML for BM is presented, including improving accuracy, reducing overhead and latency. Finally, the key challenges and open issues in the standardization of AI/ML for BM are discussed, especially the design of new protocols for AI-enabled BM. This article provides a guideline for the study of AI/ML-based BM standardization.Comment: 4 figure

    Selective targeting of microglia by quantum dots

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases.</p> <p>Methods</p> <p>Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies.</p> <p>Results</p> <p>In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity.</p> <p>Conclusions</p> <p>These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.</p

    Cathepsin B Degrades Amyloid-beta in Mice Expressing Wild-type Human Amyloid Precursor Protein

    No full text
    Accumulation of amyloid-beta (A beta), believed to be a key trigger of Alzheimer disease (AD), could result from impaired clearance mechanisms. Previously, we showed that the cysteine protease cathepsin B (CatB) degrades A beta, most likely by C-terminal truncation, in mice expressing human amyloid precursor protein with familial AD-linked mutations (hAPP(FAD)). In addition, the A beta-degrading activity of CatB is inhibited by its endogenous inhibitor, cystatin C (CysC). Reducing CysC expression markedly lowers A beta levels by enhancing CatB-mediated A beta degradation in hAPP(FAD) mice. However, because a vast majority of AD patients do not carry familial mutations, we investigated how the CysC-CatB axis affects A beta levels in mice expressing wild-type hAPP (hAPP(WT)). Enhancing CatB activity by CysC deletion significantly lowered total A beta and A beta 42 levels in hAPP(WT) mice, whereas CatB deletion increased A beta levels. To determine whether neuron-derived CatB degrades A beta in vivo, we generated transgenic mice overexpressing CatB under the control of a neuron-specific enolase promoter. Enhancing neuronal CatB activity in hAPP(WT) mice significantly lowered A beta 42 levels. The processing of hAPP(WT) was unaffected by increasing or ablating CatB activity. Thus, the CysC-CatB axis affects degradation of A beta 42 derived from hAPP lacking familial mutations. These findings support the notion that enhancing CatB activity could lower A beta, especially A beta 42, in AD patients with or without familial mutations

    Cystatin C-Cathepsin B Axis Regulates Amyloid Beta Levels and Associated Neuronal Deficits in an Animal Model of Alzheimer's Disease

    No full text
    Impaired degradation of amyloid beta (A beta) peptides could lead to A beta accumulation, an early trigger of Alzheimer's disease (AD). How A beta-degrading enzymes are regulated remains largely unknown. Cystatin C (CysC, CST3) is an endogenous inhibitor of cysteine proteases, including cathepsin B (CatB), a recently discovered A beta-degrading enzyme. A CST3 polymorphism is associated with an increased risk of late-onset sporadic AD. Here, we identified CysC as the key inhibitor of CatB-induced A beta degradation in vivo. Genetic ablation of CST3 in hAPP-J20 mice significantly lowered soluble A beta levels, the relative abundance of A beta l-42, and plaque load. CysC removal also attenuated A beta-associated cognitive deficits and behavioral abnormalities and restored synaptic plasticity in the hippocampus. Importantly, the beneficial effects of CysC reduction were abolished on a CatB null background, providing direct evidence that CysC regulates soluble A beta and A beta-associated neuronal deficits through inhibiting CatB-induced A beta degradation

    Amyloid Ī² Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Get PDF
    Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP). However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid Ī² (AĪ²) or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG) of adult mice overexpressing wild-type hAPP (hAPP-I5) compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of AĪ². Furthermore, reducing AĪ² levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and AĪ² was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice

    Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury

    No full text
    Progranulin (PGRN) is a widely expressed secreted protein that is linked to inflammation. In humans, PGRN haploinsufficiency is a major inherited cause of frontotemporal dementia (FTD), but how PGRN deficiency causes neurodegeneration is unknown. Here we show that loss of PGRN results in increased neuron loss in response to injury in the CNS. When exposed acutely to 1-methyl-4-(2ā€²-methylphenyl)-1,2,3,6-tetrahydrophine (MPTP), mice lacking PGRN (Grn(ā€“/ā€“)) showed more neuron loss and increased microgliosis compared with wild-type mice. The exacerbated neuron loss was due not to selective vulnerability of Grn(ā€“/ā€“) neurons to MPTP, but rather to an increased microglial inflammatory response. Consistent with this, conditional mutants lacking PGRN in microglia exhibited MPTP-induced phenotypes similar to Grn(ā€“/ā€“) mice. Selective depletion of PGRN from microglia in mixed cortical cultures resulted in increased death of wild-type neurons in the absence of injury. Furthermore, Grn(ā€“/ā€“) microglia treated with LPS/IFN-Ī³ exhibited an amplified inflammatory response, and conditioned media from these microglia promoted death of cultured neurons. Our results indicate that PGRN deficiency leads to dysregulated microglial activation and thereby contributes to increased neuron loss with injury. These findings suggest that PGRN deficiency may cause increased neuron loss in other forms of CNS injury accompanied by neuroinflammation
    corecore