45 research outputs found

    Stability of delayed virus infection model with a general incidence rate and adaptive immune response

    Get PDF
    We present the dynamical behaviors of a virus infection model with general infection rate, immune responses and two intracellular delays which describe the interactions of the HIV virus, target cells, CTL cells and antibodies within host. Three factors are incorporated in this model: (1) the intrinsic growth rate of uninfected cells, (2) a nonlinear incidence rate function considering both virus-tocell infection and cell-to-cell transmission, and (3) a nonlinear productivity and removal function. By the method of Lyapunov functionals and LaSalle’s invariance principle, we show that the global dynamics of the model is determined by the reproductive numbers for viral infection R0, for antibody immune response R1, for CTL immune response R2, for CTL immune competition R3 and for antibody immune competition R4. The numerical simulations are given to illustrate our theoretical results

    A Manipulator-Assisted Multiple UAV Landing System for USV Subject to Disturbance

    Full text link
    Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees

    Pretreatment Donors after Circulatory Death with Simvastatin Alleviates Liver Ischemia Reperfusion Injury through a KLF2-Dependent Mechanism in Rat

    Get PDF
    Objective. Severe hepatic ischemia reperfusion injury (IRI) can result in poor short- and long-term graft outcome after transplantation. The way to improve the viability of livers from donors after circulatory death (DCD) is currently limited. The aim of the present study was to explore the protective effect of simvastatin on DCD livers and investigate the underlying mechanism. Methods. 24 male rats randomly received simvastatin or its vehicle. 30 min later, rat livers were exposed to warm ischemia in situ for 30 min. Livers were removed and cold-stored in UW solution for 24 h, subsequently reperfused for 60 min with an isolated perfused rat liver system. Liver injury was evaluated during and after warm reperfusion. Results. Pretreatment of DCD donors with simvastatin significantly decreased IRI liver enzyme release, increased bile output and ATP, and ameliorated hepatic pathological changes. Simvastatin maintained the expression of KLF2 and its protective target genes (eNOS, TM, and HO-1), reduced oxidative stress, inhibited innate immune responses and inflammation, and increased the expression of Bcl-2/Bax to suppress hepatocyte apoptosis compared to DCD control group. Conclusion. Pretreatment of DCD donors with simvastatin improves DCD livers’ functional recovery probably through a KLF2-dependent mechanism. These data suggest that simvastatin may provide a potential benefit for clinical DCD liver transplantation

    Adaptive Terminal Sliding Mode Fault-Tolerant Control of Spacecraft Based on the Left Attitude Error Function of SO(3)

    No full text
    For the problem of spacecraft attitude actuator failure, an adaptive terminal sliding mode fault-tolerant controller (ATSMFTC) based on the differential manifold SO(3) modelling is designed in this paper. First, SO(3) is used to provide a global and unique description of the spacecraft attitude dynamic model. This modelling method not only avoids the problems of singularity and unwinding that exist in traditional modelling methods but also the SO(3) modelling has a simple formulation of the dynamic equations. Then a left attitude error descriptor function is constructed on SO(3) to design an ATSMFTC. This controller is capable of fast and accurate tracking of the time-varying desired attitude. At the same time, it can react quickly to maintain system stability in case of spacecraft attitude actuator failure. The controller designed based on the left attitude error description system of SO(3) has the features of small computational effort and simple design process. Finally, the numerical simulation of the attitude tracking error verifies the feasibility and high efficiency of the controller designed in this paper

    Multiple Roles of 25-Hydroxycholesterol in Lipid Metabolism, Antivirus Process, Inflammatory Response, and Cell Survival

    No full text
    As an essential lipid, cholesterol is of great value in keeping cell homeostasis, being the precursor of bile acid and steroid hormones, and stabilizing membrane lipid rafts. As a kind of cholesterol metabolite produced by enzymatic or radical process, oxysterols have drawn much attention in the last decades. Among which, the role of 25-hydroxycholesterol (25-HC) in cholesterol and bile acid metabolism, antivirus process, and inflammatory response has been largely disclosed. This review is aimed at revealing these functions and underlying mechanisms of 25-HC
    corecore