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Abstract

We present the dynamical behaviors of a virus infection model with general infection rate, immune
responses and two intracellular delays which describe the interactions of the HIV virus, target cells,
CTL cells and antibodies within host. Three factors are incorporated in this model: (1) the intrinsic
growth rate of uninfected cells, (2) a nonlinear incidence rate function considering both virus-to-
cell infection and cell-to-cell transmission, and (3) a nonlinear productivity and removal function.
By the method of Lyapunov functionals and LaSalle’s invariance principle, we show that the global
dynamics of the model is determined by the reproductive numbers for viral infection R0, for anti-
body immune response R1, for CTL immune response R2, for CTL immune competition R3 and
for antibody immune competition R4. The numerical simulations are given to illustrate our theo-
retical results.

Keywords: General incidence rate; Cellular immunity response; Humoral immunity response; Dis-
stributed delay; Basic reproductive numbers; Global stability; Lyapunov functional

MSC 2010 No: 34D20, 34D23, 92B20, 92D30

1. Introduction

In the past few decades, many authors have proposed virus infection models and analysed the
dynamics of them. Mathematical models provide powerful tools for understanding the virus in-
fection mechanisms. In the viral infection, the immune system usually defends against the virus.
Such as human immunodeficiency virus (HIV) (Jiang and Wang 2014, Sattentau 2011, Samba and
Hamad 2014), the hepatitis B virus (HBV) (Min et al. 2008) and the hepatitis C virus (HCV)
(Wodarz 2003, Yousfi et al. 2013, Zhao and Xu 2014), the adaptive immune system has cellular
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and humoral immunity. The cellular immune response directly kills infected cells by CTL cells.
The humoral immune response neutralizes the virus antibodies which are produced by the B cells.
Therefore, cellular and humoral immunity are essential in defending infection of the virus. Wodarz
(2003) put forword the following model with cellular and humoral immunity:



dx(t)
dt = λ− dx(t)− βx(t)v(t),

dy(t)
dt = βx(t)v(t)− ay(t)− py(t)z(t),

dv(t)
dt = ky(t)− uv(t)− qv(t)w(t),

dz(t)
dt = cy(t)z(t)− bz(t),

dw(t)
dt = rv(t)z(t)− hw(t),

(1.1)

where, x(t), y(t), v(t), z(t) and w(t) represent the the concentration of susceptible target cells, in-
fected cells, free virus, CTL cells and antibodies at time t, respectively. Parameter β represents
the rate for susceptible target cells to be infected by virus. Parameters d, a, u, b and h represent
the removal rate of susceptible taeget cells, infected cells, free virus, CTL cells and antibodies ,
respectively. Parameters p and q denote, respectively, the rate at which infected cells are killed by
CTL cells and the neutralization rate of the virus by the antibodies. All parameters are positive
constants.

In fact, there is always time delays in real virus infection. So, several researchers introduced time
delays and studied the obtained delay differential equations. In many literatures, several mathe-
matical models in Elaiw et al. (2016), Jiang and Wang (2014), Sattentau (2011), Wodarz (2003),
Wang et al. (2013), Yousfi et al. (2013) have incorporated cellular or humoral immune response.
However, the constant delays are not strictly conforming to biological significance.

Furthermore, some authors studied viral infection with distribution time delays Elaiw and Alsham-
rani (2015); Elaiw and Alshamrani (2014), Hattaf and Yousfi (2016), Samba and Hamad (2014),
Wang et al. (2014). These delays may or may not induce periodic scillations via Hopf bifurcations,
this depends on how and in what forms the delays are incorporated Xu et al. (2011), Xu and Shao
(2011), Xu and Liao (2014), Xu et al. (2013), Xu (2013). Although there is no intracellular delays,
it is known that target-cell dynamic can cause sustained oscilliations Sattentau (2011).

In order to investigate the effect of distributed time delays, Wang et al. (2014) put forward the
following virus infection model with two continuous distributed delays and nonlinear incidence
rate: 

dx(t)
dt = λ− dx(t)− kx(t)f(v(t)),

dy(t)
dt =

∫∞
0 f1(τ)e−m1τx(t− τ)f(v(t− τ)dτ − ay(t)− py(t)z(t),

dv(t)
dt = k

∫∞
0 f2(τ)e−m2τy(t− τ)dτ − uv(t)− qv(t)w(t),

dz(t)
dt = cy(t)z(t)− bz(t),

dw(t)
dt = rv(t)w(t)− hw(t),

(1.2)
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where, e−m1τ denoted as the possibility that susceptible target cells survive from t − τ > 0 to t,
e−m2τ accounted for the possibility that infected cells survive from t− τ > 0 to t.
In addition, it was assumed that distribution functions f1(τ) and f2(τ) satisfied:

fi(τ) > 0 ,

∫ ∞
0

fi(τ)dτ = 1,

and

0 < ηi =

∫ ∞
0

fi(τ)e−miτdτ ≤ 1, for i = 1, 2.∫∞
0 f1(τ)e−m1τdτ was the probability that target cells contacted by the virus particles at time t− τ

survived τ time units and became infected at time t,
∫∞
0 f2(τ)e−m2τdτ was the probability that a

cell infected at time t− τ started to yield new infectious virus at time t [Wang et al. (2014)].

In recent literatures, it has been shown that infected cells could also infect target cells Sattentau
(2011), Sattentau (2010). But the incidence rates of the above models are not related to infected
cells y and only related to the susceptible cells x and virus v. Therefore, Elaiw (2010) put forward
virus infection model with standard incidence rate xv

x+y . Hattaf and Yousfi (2016) proposed virus
infection model with general incidence rate f(x, y, v)v. Elaiw and Alshamrani (2016) presented
virus infection model with f(x, y, v).

Motivated by the work of Elaiw and Alshamrani (2014), Hattaf and Yousfi (2016), Wang et al.
(2014), Zhao and Xu (2014), we propose the following viral infection model with two distributed
delays, cellular and humoral immunity:



dx(t)
dt = n(x(t))− f(x(t), y(t), v(t)),

dy(t)
dt =

∫∞
0 f1(τ)e−m1τf(x(t− τ), y(t− τ), v(t− τ))dτ − ag1(y(t))− pg1(y(t))g4(z(t)),

dv(t)
dt = k

∫∞
0 f2(τ)e−m2τg1(y(t− τ))dτ − ug2(v(t))− qg2(v(t))g3(w(t)),

dz(t)
dt = cg1(y(t))g4(z(t))− bg4(z(t)),

dw(t)
dt = rg2(v(t))g3(w(t))− hg3(w(t)).

(1.3)

In this model, n(x(t)) represents intrinsic growth rate of uninfected cells accounting for both pro-
duction and natural mortality. We assume that continuously differentiable n(x) satisfies following
assumption:

Hypothesis H1.

• ∃ x∗0 > 0 such that n(x∗0) = 0, n(x) > 0 , ∀ x ∈ [0, x∗0),
• n(x) is decreasing with respect to x , x > 0,
• there are s and s > 0 such that n(x) ≤ s− sx for x ≥ 0.

In the literature of virus dynamics, there are two main typical forms: one is n(x(t)) = λ − dx(t)

(Elaiw et al. 2016), and the other is n(x) = λ − dx(t) + rx(t)(1 − x
K ) (Sattentau 2011), where

λ, d, r,K are positive real numbers. In addition, we assume that general incidence rate function
f(x, y, v) is continuously differentiable and satisfies following assumption:

3
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Hypothesis H2.

• f(x, y, v) > 0 and f(0, y, v) = f(x, y, 0) = 0, ∀ x > 0, y ≥ 0, v > 0,
• ∂f(x,y,v)

∂x > 0, ∂f(x,y,v)∂y < 0, ∂f(x,y,v)∂v > 0 and ∂f(x,0,0)
∂v > 0 , ∀ x > 0, y ≥ 0, v > 0,

• d
dx(∂f(x,0,0)∂v ) > 0 ,∀ x > 0.

The presented function f(x, y, v) is very extensive, can include many forms, such as: (1) bilinear
incidence rate βxv (Elaiw et al. 2016), (2) standard incidence rate βxv

x+y (Elaiw 2010, Min et al.
2008), (3) saturated incidence rate βxv

1+α1v
(Song 2007), (4) Holling-type II type βxv

1+α2x
(Lin and Ma

1993), (5) Beddington-DeAngelis type βxv
1+α1v+α2x

(Dubey, Dubey and Dubey 2015), (6) Crowley-
Martin type βxv

1+α1v+α2x+α1α2xv
(Xu 2012, Zhao and Cui 2011), where β, α1, α2 > 0.

It is also assumed that ag1(y), ug2(v), hg3(w), bg4(z) denote the death rates of the infected target
cells, free viruses, antibodies, and CTL cells, respectively. Let pg1(y)g4(z) and cg1(y)g4(z) be the
killing rate of infected cells and the birth rate of the CTL cells, let qg2(v)g3(w) and rg2(v)g3(w)

be the neutralization rate of viruses and activation rate of B cells, respectively. We assume that
continuously differentiable function gi(u), i = 1, 2, 3, 4, satisfy following assumption:

Hypothesis H3.

• gj(u) > 0 , ∀ u > 0, gj(0) = 0, j = 1, 2, 3, 4,

• g′j(u) > 0 , ∀ u > 0, j = 1, 2, 3, 4, gj(u) ≥ 0, ∀ u ≥ 0,
• ∃ cj ≥ 0, j = 1, 2, 3, 4, such that gj(u) > cju, ∀ u ≥ 0.

Hypothesis H4.

• f(x,y,v)
g2(v)

is decreasing with respect to v, ∀ v > 0.

In this study, we will explore the dynamics of virus infection model with two distributed delays,
adaptive immune response and nonlinear incidence rate. Our aim is to carry out the global stability
of system (1.3). We first derive five threshold parameters, then use the method of Lyapunov func-
tionals, and finally obtain the global stabilities of the equilibria of system (1.3). The global stability
only depends on the threshold parameters.

This paper is organized as follows. In the next section, we obtain the basic properties of system
(1.3), such as the solution of the non-negative and boundedness. We study the equilibria and thresh-
old parameters of system (1.3) in section 3. In section 4, by the method of Lyapunov functionals,
we show that the global stabilities of the five equilibria, In section 5, we present some numerical
simulations to illustrate the main theoretical results and some biological significance is discussed
in last section.

2. Non-negativity and boundedness of solutions
To study the basic properties of model (1.3), we choose a suitable phase.

Let R5
+ = {(x1, x2, x3, x4, x5) : xi ≥ 0, i = 1, 2, 3, 4, 5} , C = C × C × C × C × C and

C := {φ ∈ C((−∞, 0], R) : φ(θ)eαθ is uniformly continuous on(−∞, 0] and ‖φ‖ <∞},

4
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where α > 0 is constant and norm is defined by ‖φ‖ = supθ≤0|φ(θ)|eαθ for φ ∈ C, we assume that
the initial conditions for system (1.3) satisfy:{

x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ), z(θ) = φ4(θ),

w(θ) = φ5(θ), θ ∈ (−∞, 0], φi(0) > 0, i = 1, 2, 3, 4, 5.
(2.1)

Note that C is a Banach space of fading memory type. By the fundamental theory of functional dif-
ferential equation (Kuang 1993), system (1.3) admits a unique solution (x(t), y(t), v(t), z(t), w(t))T

satisfying initial conditions (2.1).

Next, we discuss the non-negativity and boundness of the solution of system (1.3). For conve-
nience, the Hypothesis H1-H4 will be used throughout this paper.

Theorem 2.1.

Let (x(t), y(t), v(t), z(t), w(t))T be the solution of system (1.3) with initial conditions (2.1), then
(x(t), y(t), v(t), z(t), w(t))T are all non-negative and ultimately uniformly bounded.

Proof:

To show the non-negativity of the solution of system (1.3). We put the system into the matrix from
X ′(t) = Y (X(t)), where

X(t) =
[
x(t), y(t), v(t), z(t), w(t)

]T
, Y =

[
Y1, Y2, Y3, Y4, Y5

]T
,

Y (X(t)) =
[
Y1(X(t)), Y2(X(t)), Y3(X(t)), Y4(X(t)), Y5(X(t))

]T

=


n(x(t))− f(x(t), y(t), v(t))∫∞

0 f1(τ)e−m1τf(x(t− τ), y(t− τ), v(t− τ))dτ − ag1(y(t))− pg1(y(t))g4(z(t))

k
∫∞
0 f2(τ)e−m2τg1((y(t− τ))dτ − ug2(v(t))− qg2(v(t))g3(w(t))

cg1(y(t))g4(z(t))− bg4(z(t))
rg2(v(t))g3(w(t))− hg3(w(t))

 .

It is easy to see that function Y satisfies the following conditions:

Yi(X(t))|Xi(t)=0, X(t)∈R5
+
≥ 0, i = 1, 2, 3, 4, 5,

thus implies (x(t), y(t), v(t), z(t), w(t))T are non-negativity.

Next, we prove that the system are ultimately bounded. From the first equation of system (1.3), we
have ẋ ≤ n(x) ≤ s− sx, implying lim sup

t→∞
x(t) ≤ s

s .

Let

F1(t) =

∫ ∞
0

f1(τ)e−m1τx(t− τ)dτ + y(t) +
p

c
z(t).

Then,
F ′1(t) =

∫ ∞
0

f1(τ)e−m1τn(x(t− τ))dτ − ag1(y)− p

c
bg4(z)

≤
∫ ∞
0

f1(τ)e−m1τ (s− sx(t− τ))dτ − ac1y − bc4
p

c
z

5
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≤ s
∫ ∞
0

f1(τ)e−m1τdτ − s
∫ ∞
0

f1(τ)e−m1τx(t− τ)dτ − ac1y − bc4
p

c
z

= s− δ1F1(t),

where δ1 = min{s, ac1, bc4pc }. By standard comparison principle, we have lim sup
t→∞

F1(t) ≤ s
δ1

, and

thus, lim sup
t→∞

y(t) ≤ s
δ1

and lim sup
t→∞

z(t) ≤ s
δ1

.

Let

F2(t) = v(t) +
q

r
w(t).

Then,
F ′2(t) = k

∫ ∞
0

f2(τ)e−m2τg1(y(t− τ))dτ − ug2(v(t))− q

r
hg3(w(t))

≤ kg1(
s

δ1
)

∫ ∞
0

f2(τ)e−m2τdτ − uc2v(t)− hc3
q

r
w(t)

≤ kη2g1(
s

δ1
)− δ2F2(t).

Hence, we have
F ′2(t) ≤M2 − δ2F2(t),

where M2 = kη2g1(
s
δ1

), and δ2 = min{uc2, hc3qr }. Similarly, lim sup
t→∞

F2(t) ≤ M2

δ2
, and thus,

lim sup
t→∞

v(t) ≤ M2

δ2
and lim sup

t→∞
w(t) ≤ r

q
M2

δ2
. Therefore, x(t), y(t), v(t), z(t), w(t) are ultimately uni-

formly bounded. This completes the proof. �

We denote

Γ = {(x, y, v, z, w) ∈ C : ‖x‖ ≤ s

s
, ‖y‖ ≤ s

δ1
, ‖v‖ ≤ M2

δ2
, ‖z‖ ≤ s

δ1
, ‖w‖ ≤ rM2

qδ2
},

where ‖φ‖ = lim sup
t→∞

φ(t).

It can prove that the bounded region Γ is positively invariant with respect to system (1.3).

3. Threshold parameters and equilibria

In the section, we define five threshold parameters, and obtain five possible equilibria which satisfy
certain conditions. First, five threshold parameters are given below, which are called the basic
reproduction numbers Miaoet al.(2016), Wanget al.(2014), Zhao and Xu(2014), and more basic
reproductive number theory can referred literatures Diekmann et al. (1990); Van and Watmough
(2002).

R0 =
kη1η2
aug′2(0)

∂f(x∗0, 0, 0)

∂v
,

which represents the basic infection reproduction number of system (1.3).

R1 =
kη1η2
au

f(x∗2, y
∗
2, v
∗
2)

g2(v∗2)
,

which is called the antibody immune response reproductive number of system (1.3).

R2 =
kη1η2
au

f(x∗3, y
∗
3, v
∗
3)

g2(v∗3)
,

which is called the CTL immune response reproductive number of system (1.3).

6
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R3 =
cη1f(x∗4, y

∗
4, v
∗
4)

ab
and R4 =

kη2br

uch
,

which are called tht CTL immune competitive reproductive number and the antibody immune
competitive reproductive number of system (1.3), respectively.

Remark 1.

From Hypothesis H2 and Hypothesis H4, we can get R1 < R0 and R2 < R0. Next we will prove
them.

R1 =
kη1η2
au

f(x∗2, y
∗
2, v
∗
2)

g2(v∗2)
≤ kη1η2

au
lim
v→0+

f(x∗2, y
∗
2, v)

g2(v)

=
kη1η2
aug′2(0)

∂f(x∗2, y
∗
2, v
∗
2)

∂v
<

kη1η2
aug′2(0)

∂f(x∗0, 0, 0)

∂v
= R0,

and

R2 =
kη1η2
au

f(x∗3, y
∗
3, v
∗
3)

g2(v∗3)
≤ kη1η2

au
lim
v→0+

f(x∗3, y
∗
3, v)

g2(v)

=
kη1η2
aug′2(0)

∂f(x∗3, y
∗
3, v)

∂v
<

kη1η2
aug′2(0)

∂f(x∗0, 0, 0)

∂v
= R0.

Hence, we have the following theorem:

Theorem 3.1.

System (1.3) exist five threshold parameters R0, R1, R2, R3, R4, such that:

(1) If R0 ≤ 1, then system (1.3) has an infection-free equilibrium E0 = (x∗0, 0, 0, 0, 0);
(2) If R0 > 1, R1 ≤ 1 and R2 ≤ 1, then system (1.3) has an immune-free infection equilibrium

E1 = (x∗1, y
∗
1, v

∗
1, 0, 0);

(3) If R1 > 1, then system (1.3) has an infection equilibrium E2 = (x∗2, y
∗
2, v

∗
2, 0, w∗2) with only

antibody immune responses;
(4) If R2 > 1, then system (1.3) has an infection equilibrium E3 = (x∗3, y

∗
3, v

∗
3, z

∗
3 , 0) with only

CTL immune responses;
(5) If R3 > 1 and R4 > 1, then system (1.3) has an infection equilibrium E4 = (x∗4, y

∗
4, v

∗
4, z

∗
4 , w

∗
4)

with both CTL and antibody immune responses.

Proof:

Let 

0 = n(x)− f(x, y, v),

0 = η1f(x, y, v)− ag1(y)− pg1(y)g4(z),

0 = kη2g1(y)− ug2(v)− qg2(v)g3(w),

0 = cg1(y)g4(z)− bg4(z),
0 = rg2(v)g3(w)− hg3(w).

(3.1)

7
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(1) It is obvious that system (1.3) has an infection-free equilibrium E0 = (x∗0, 0, 0, 0, 0);
(2) When z = 0, w = 0, the existence of immune-free equilibrium E1 = (x∗1, y

∗
1, v

∗
1, 0, 0) is

equivalent to the existence of positive solution (x∗1, y
∗
1, v
∗
1) of the following equations:

n(x) = f(x, y, v) =
a

η1
g1(y) =

au

kη1η2
g2(v). (3.2)

Hypothesis H3 implies g−11 , g−12 exists. Therefore,

y = g−11

(
η1n(x)

a

)
= ϕ1(x), v = g−12

(
kη1η2
au

n(x)

)
= ϕ2(x). (3.3)

Define

G1(x) = f(x, ϕ1(x), ϕ2(x))− au

kη1η2
g2(ϕ2(x)).

Then, from Hypothesis H1-H3, we have

G1(0) = − au

kη1η2
g2(ϕ2(0)) < 0,

G1(x
∗
0) = f(x0, 0, 0)− au

kη1η2
g2(0) = 0.

In addition,

G′1(x
∗
0) =

∂f(x0, 0, 0)

∂x
+ ϕ′1(x

∗
0)
∂f(x∗0, 0, 0)

∂y
+ ϕ′2(x

∗
0)
∂f(x∗0, 0, 0)

∂v
− au

kη1η2
g′2(0)ϕ′2(x

∗
0).

Hypothesis H2 implies that ∂f(x∗
0 ,0,0)
∂x = ∂f(x∗

0 ,0,0)
∂y = 0. From Hypothesis H3, we know that

g′2(0) > 0.

Note that

G′1(x
∗
0) =

f(x∗0, 0, 0)

∂x
+
f(x∗0, 0, 0)

∂y
ϕ′1(x

∗
0) +

f(x∗0, 0, 0)

∂v
ϕ′2(x

∗
0)−

au

kη1η2
g′2(0)ϕ′2(x

∗
0)

=
au

kη1η2
ϕ′2(x

∗
0)g
′
2(0)

(
kη1η2
aug′2(0)

∂f(x∗0, 0, 0)

∂v
− 1

)
=

au

kη1η2
ϕ′2(x

∗
0)g
′
2(0)(R0 − 1).

Hence, if R0 > 1, then G′1(x
∗
0) < 0 and there exists x∗1 ∈ (0, x∗0) such that G1(x

∗
1) = 0. From

(3.3) we have y∗1 = ϕ2(x
∗
1), v∗1 = ϕ(x∗1). Therefore, E1 exists if R0 > 1.

(3) When z = 0, w 6= 0, consider the existence of infection equilibrium E2 = (x∗2, y
∗
2, v

∗
2, 0, w∗2)

with only antibody immune response. It is clear that v∗2 = g−12 (hr ). Define

G2(x) = n(x)− f(x, ϕ1(x), v∗2).

There exists a unique x∗2 ∈ (0, x∗0) such that G2(x
∗
2) = 0 since G2(0) = n(0) > 0 and G2(x

∗
0) =

n(x∗0)− f(x∗0, y
∗
2, v
∗
2) < 0. Then, we have y∗2 = ϕ1(x

∗
2) > 0.
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Solving w∗2 from (3.1), we obtain that

w∗2 = g−13

(
kη2g1(y

∗
2)− ug2(v∗2)

qg2(v∗2)

)
= g−13

(
u

q

(
kη2g1(y

∗
2)

ug2(v∗2)
− 1

))
= g−13

(
u

q

(
kη1η2f(x∗2, y

∗
2, v
∗
2)

aug2(v∗2)
− 1

))
= g−13

(
u(R1 − 1)

q

)
.

If R1 > 1, then w∗2 > 0 . Therefore, E2 exists and is unique if R1 > 1.

(4) When z 6= 0, w = 0, we consider the existence of infection equilibriumE3 = (x∗3, y
∗
3, v

∗
3, z

∗
3 , 0)

with only CTL immune response. From the third and fourth equations of (3.1), we obtain
unique y∗3 = g−11 ( bc) and v∗3 = g−12 ( bkη2cu ). Define

G3(x) = n(x)− f(x, y∗3, v
∗
3).

By Hypothesis H1 and Hypothesis H2, we have G′3(x) = n′(x)− ∂f(x,y∗3 ,v
∗
3 )

∂x < 0, since G3(0) =

n(0) > 0 and G3(x
∗
0) = n(x∗0) − f(x∗0, y

∗
3, v
∗
3) < 0, there exists a unique x∗3 ∈ (0, x∗0) such that

G2(x
∗
3) = 0. Solving the second equation of system (3.1), we have

z∗3 = g−14

(
η1f(x∗3, y

∗
3, v
∗
3)− ag1(y∗3)

qg1(y∗3)

)
= g−14

(
a

p

(
η1f(x∗3, y

∗
3, v
∗
3)

ag2(y∗3)
− 1

))
= g−14

(
a

p

(
kη1η2f(x∗3, y

∗
3, v
∗
3)

aug2(v∗3)
− 1

))
= g−14

(
a(R2 − 1)

p

)
.

If R2 > 1, then z∗3 > 0 . Therefore, E3 exists and is unique if R2 > 1.

(5) When z 6= 0, w 6= 0, consider the existence of infection equilibrium E4 = (x∗4, y
∗
4, v

∗
4, z

∗
4 , w

∗
4)

with both CTL and antibody immune responses. From the fourth and fifth equation of (3.1),
we obtain unique y∗4 = g−11 ( bc) and v∗4 = g−12 (hr ). Define

G4(x) = n(x)− f(x, y∗4, v
∗
4).

By Hypothesis H1 and Hypothesis H2, one has G′4(x) < 0, since G4(0) = n(0) > 0 and
G4(x

∗
0) = n(x∗0)− f(x∗0, y

∗
4, v
∗
4) < 0, there exists a unique x∗4 ∈ (0, x∗0) such that G4(x

∗
4) = 0.

From the second equation of (3.1), we further obtain a unique

z∗4 = g−14

(
η1f(x∗4, y

∗
4, v
∗
4)− ag1(y∗4)

pg1(y∗4)

)
= g−14

(
a

p

(
η1f(x∗4, y

∗
4, v
∗
4)

ag1(y∗4)
− 1

))
= g−14

(
a

p

(
cη1f(x∗4, y

∗
4, v
∗
4)

ab
− 1

))
= g−14

(
a(R3 − 1)

p

)
.

From the third equation of (3.1), we have

w∗4 = g−13

(
kη2g1(y

∗
4)− ug2(v∗4)

qg2(v∗4)

)
= g−13

(
u

q

(
kη2g1(y

∗
4)

ug2(v∗4)
− 1

))
= g−14

(
u

q

(
kη2br

uch
− 1

))
= g−14

(
u(R4 − 1)

q

)
.

If R3 > 1 and R4 > 1, then z∗4 > 0 and w∗4 > 0. Therefore, E4 exists and is unique if R3 > 1 and
R4 > 1. This completes the proof. �
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4. Threshold parameters and equilibria

In this section, we consider the global asymptotic stabilities of five possible equilibria. For conve-
nience, we define:

H(u) = u− 1− lnu, u ∈ (0,+∞).

It is easy to see that H(u) ≥ 0, u ∈ (0,+∞) for all u ∈ (0,+∞) and min
0<u<∞

H(u) = H(1) = 0.

4.1. Stability of Equilibrium E0

Theorem 4.1.

If R0 ≤ 1, then infection-free equilibrium E0 is globally asymptotically stable.

Proof:

We construct a Lyapunov functional V0(t) : Γ→ R as follows:

V0(t) =x(t)−
∫ x(t)

x∗
0

lim
v→0

f(x∗0, 0, v)

f(θ, 0, v)
dθ +

1

η1
y(t) +

a

kη1η2
v(t) +

p

cη1
z(t) +

aq

krη1η2
w(t)

+
1

η1

∫ ∞
0

f1(τ)e−m1τ

∫ 0

−τ
f(x(t+ s), y(t+ s), v(t+ s))dsdτ

+
a

η1η2

∫ ∞
0

f2(τ)e−m2τ

∫ 0

−τ
g1(y(t+ s))dsdτ.

Calculating the time derivative of V0(t) along solutions of system (1.3), we obtain

dV0(t)

dt
=

(
1− lim

v→0

f(x∗0, 0, v)

f(x, 0, v)

)
(n(x)− f(x, y, v))

+
1

η1

(∫ ∞
0

f1(τ)e−m1τf(x(t− τ), y(t− τ), v(t− τ))dτ − ag1(y)− pg1(y)g4(z)

)
+

a

kη1η2

(
k

∫ ∞
0

f2(τ)e−m2τg1(y(t− τ))dτ − ug2(v)− qg2(v)g3(w)

)
+

p

cη1
(cg1(y)g4(z)− bg4(z)) +

aq

krη1η2
(rg2(v)g3(w)− hg3(w))

+ f(x, y, v)− 1

η1

∫ ∞
0

f1(τ)e−m1τf(x(t− τ), y(t− τ), v(t− τ))dτ

+
a

η1
g1(y)− a

η1η2

∫ ∞
0

f2(τ)g1(y(t− τ))dτ

=n(x)

(
1− lim

v→0

f(x∗0, 0, v)

f(x, 0, v)

)
+ f(x, y, v) lim

v→0

f(x∗0, 0, v)

f(x, y, v)

− au

kη1η2
g2(v)− pb

cη1
g4(z)−

aqh

krη1η2
g3(w)

=n(x)

(
1− lim

v→0

f(x∗0, 0, v)

f(x, 0, v)

)
+

au

kη1η2
g2(v)

(
kη1η2
au

f(x, 0, v)

g2(v)
lim
v→0

f(x∗0, 0, v)

f(x, y, v)
− 1

)
− pbη1

c
g4(z)−

aqh

krη1η2
g3(w).
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By Hypothesis H1 and Hypothesis H2, we have

(n(x)− n(x∗0))

(
1− ∂f(x∗0, 0, 0)/∂v

∂f(x, 0, 0)/∂v

)
≤ 0.

By Hypothesis H1 and Hypothesis H4, we get
f(x, y, v)

g2(v)
<
f(x, 0, v)

g2(v)
≤ lim

v→0

f(x, 0, v)

g2(v)
=

1

g′2(0)

∂f(x, 0, 0)

∂v
.

Then,
dV0(t)

dt
≤(n(x)− n(x∗0))

(
1− lim

v→0

f(x∗0, 0, v)

f(x, 0, v)

)
+

au

kη1η2
g2(v)(R0 − 1)

− pb

cη1
g4(z)−

aqh

krη1η2
g3(w).

Therefore, if R0 ≤ 1, then dV0(t)
dt ≤ 0 for all x, y, v, z, w > 0, we know that dV0(t)

dt = 0 if and only if
x(t) = x∗0, v(t) = 0, z(t) = 0, y(t) = 0 and w(t) = 0. It easy to see that the largest invariant set in
{(x, y, v, z, w) ∈ Γ : dV0(t)

dt = 0} is singleton {E0}. By LaSalleï¿œï¿œs invariance principle (Kuang
1993), we derive that E0 is globally asymptotically stable. This completes the proof. �

To prove the global stability of the equilibria E1, E2, E3 and E4, By Hypothesis H2 and Hypoth-
esis H4, we obtain

(
f(x, y, v)

f(x, y∗i , v
∗
i )
− 1

)(
g2(v

∗
i )

g2(v)
− f(x, y∗i , v

∗
i )

f(x, y, v)

)
≤ 0, i = 1, 2, 3, 4, for all x, y, v > 0.

4.2. Stability of Equilibrium E1

To prove the global stability of equilibrium E1, we introduce two lemmas.

Lemma 4.2.

If R0 > 1, let x∗2 and v∗2 satisfy n(x∗2) = f(x∗2, y
∗
2, v
∗
2) and g2(v

∗
2) = h

r . Compare with E1 =

(x∗1, y
∗
1, v
∗
1, 0, 0), we have sign(x∗2 − x∗1) = sign(v∗1 − v∗2) = sign(R1 − 1).

Proof:

By monotonicity in Hypothesis H1 and Hypothesis H2, we obtain

(n(x∗2)− n(x∗1))(x
∗
1 − x∗2) > 0, (4.1)

(f(x∗2, y
∗
2, v
∗
2)− f(x∗1, y

∗
2, v
∗
2))(x∗2 − x∗1) > 0, (4.2)

(f(x∗1, y
∗
2, v
∗
2)− f(x∗1, y

∗
1, v
∗
2))(y∗1 − y∗2) > 0, (4.3)

(f(x∗1, y
∗
1, v
∗
2)− f(x∗1, y

∗
1, v
∗
1))(v∗2 − v∗1) > 0. (4.4)
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First, we prove sign(x∗2 − x∗1) = sign(v∗1 − v∗2). Suppose sign(x∗2 − x∗1) = sign(v∗2 − v∗1). From
n(x∗1) = f(x∗1, y

∗
1, v
∗
1), we get

n(x∗2)− n(x∗1) = f(x∗2, y
∗
2, v
∗
2)− f(x∗1, y

∗
1, v
∗
1) = a(g1(y

∗
2)− g1(y∗1)). (4.5)

Hypothesis H3 implies g1(y) is an increasing function, then sign(x∗1 − x∗2) = sign(y∗2 − y∗1).

Note that

n(x∗2)− n(x∗1) =f(x∗2, y
∗
2, v
∗
2)− f(x∗1, y

∗
1, v
∗
1)

=(f(x∗2, y
∗
2, v
∗
2)− f(x∗1, y

∗
2, v
∗
2)) + (f(x∗1, y

∗
2, v
∗
2)− f(x∗1, y

∗
1, v
∗
2))

+ (f(x∗1, y
∗
1, v
∗
2)− f(x∗1, y

∗
1, v
∗
1)).

From (4.1)− (4.5), we have

sign(x∗1 − x∗2) = sign(x∗2 − x∗1),

which is a contradiction. Thus sign(x∗2 − x∗1) = sign(v∗1 − v∗2). Hypothesis H4 implies that

(
f(x∗1, y

∗
1, v
∗
2)

g2(v∗2)
− f(x∗1, y

∗
1, v
∗
1)

g2(v∗1)

)
(v∗1 − v∗2) > 0. (4.6)

Using kη1η2
au

f(x∗
1 ,y

∗
1 ,v

∗
1 )

g2(v∗1 )
= 1, we have

R1 − 1 =
kη1η2
au

[(
1

g2(v2)
(f(x∗2, y

∗
2, v
∗
2)− f(x∗1, y

∗
2, v
∗
2)

)
+

1

g2(v∗2)
((f(x∗1, y

∗
2, v
∗
2)− f(x∗1, y

∗
1, v
∗
2))

+

(
f(x∗1, y

∗
1, v
∗
2)

g2(v∗2)
− f(x∗1, y

∗
1, v
∗
1)

g2(v∗1)

)]
.

Thus, from (4.3), (4.4), (4.5) and (4.6), we obtain sign(R1−1) = sign(v∗1−v∗2). This completes the
proof. �

Lemma 4.3.

If R0 > 1, let x∗3, y∗3 and v∗3 satisfy s(x∗3) = f(x∗3, y
∗
3, v
∗
3) and g1(y∗3) = b

c , g2(v
∗
3) = kbη2

uc , then we have
sign(x∗3 − x∗1) = sign(v∗1 − v∗3) = sign(y∗1 − y∗3) = sign(R2 − 1).

Proof:

It is similar to the proof of lemma 4.1. �

Theorem 4.4.

If R0 > 1, R1 ≤ 1 and R2 ≤ 1, then immune-free equilibrium E1 is globally asymptotically stable.
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Proof:

We define a Lyapunov functional V1(t) : Γ→ R as follows:

V1(t) =x(t)−
∫ x(t)

x∗
1

f(x∗1, y
∗
1, v
∗
1)

f(θ, y∗1, v
∗
1)

dθ +
1

η1

(
y(t)−

∫ y(t)

y∗1

g1(y
∗
1)

g1(θ)
dθ

)

+
a

kη1η2

(
v(t)−

∫ v(t)

v∗1

g2(y
∗
1)

g2(θ)
dθ

)
+

p

cη1
z(t) +

aq

rkη1η2
w(t)

+
f(x∗1, y

∗
1, v
∗
1)

η1

∫ ∞
0

f1(τ)e−m1τ

∫ 0

−τ
H

(
f(x(t+ s), y(t+ s), v(t+ s))

f(x∗1, y
∗
1, v
∗
1)

)
dsdτ

+
ag1(y

∗
1)

η1η2

∫ ∞
0

f2(τ)e−m2τ

∫ 0

−τ
H

(
g1(y(t+ s))

g1(y∗1)

)
dsdτ.

Calculating the derivative of V1(t) along solutions of system (1.3), we have

dV1(t)

dt
=

(
1− f(x∗1, y

∗
1, v
∗
1)

f(x, y∗1, v
∗
1)

)
(n(x)− f(x, y, v))

+
1

η1

(
1− g1(y

∗
1)

g1(y)

)(∫ ∞
0

f1(τ)e−m1τf(x(t− τ), y(t− τ), v(t− τ))dτ

− ag1(y)− pg1(y)g4(z)

)
+

a

kη1η2

(
1− g2(v

∗
1)

g2(v)

)(
k

∫ ∞
0

f2(τ)e−m2τg1(y(t− τ))dτ

− ug2(v)− qg2(v)g3(w)

)
+

p

cη1
(cg1(y)g4(z)− bg4(z)) +

aq

rkη1η2
(rg2(v)g3(w)− hg3(w))

+
f(x∗1, y

∗
1, v
∗
1)

η1

∫ ∞
0

f1(τ)e−m1τ

(
f(x, y, v)

f(x∗1, y
∗
1, v
∗
1)
− f(x(t− τ), y(t− τ), v(t− τ))

f(x∗1, y
∗
1, v
∗
1)

+ ln
f(x(t− τ), y(t− τ), v(t− τ))

f(x, y, v)

)
dτ

+
ag1(y

∗
1)

η1η2

∫ ∞
0

f2(τ)e−m2τ

(
g1(y)

g1(y∗1)
− g1(y(t− τ))

g1(y∗1))
+ ln

g1(y(t− τ))

g1(y∗1))

)
dτ.

Note that

n(x∗1) = f(x∗1, y
∗
1, v
∗
1) =

ag1(y
∗
1)

η1
=

au

kη1η2
g2(v

∗
1).
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We have

dV1(t)

dt
=(n(x)− n(x∗1))

(
1− f(x∗1, y

∗
1, v
∗
1)

f(x, y∗1, v
∗
1)

)
+ f(x∗1, y

∗
1, v
∗
1)

(
−1 +

g2(v)f(x, y∗1, v
∗
1)

g2(v∗1)f(x, y, v)
+

f(x, y, v)

f(x, y∗1, v
∗
1)
−

g(v)

g2(v∗1)

)
+ f(x∗1, y

∗
1, v
∗
1)

(
1− 1

η1

∫ ∞
0

f1(τ)e−m1τ g1(y
∗
1)f(x(t− τ), y(t− τ), v(t− τ))

g1(y)f(x∗1, y
∗
1, v
∗
1)

dτ

)
+ f(x∗1, y

∗
1, v
∗
1)

(
1− 1

η2

∫ ∞
0

f2(τ)e−m2τ g2(v
∗
1)g1(y(t− τ))

g2(v)g1(y)
dτ

)
+
f(x∗1, y

∗
1, v
∗
1)

η1

∫ ∞
0

f1(τ)e−m1τ ln
f(x(t− τ), y(t− τ), v(t− τ))

f(x, y, v)
dτ

+
f(x∗1, y

∗
1, v
∗
1)

η2

∫ ∞
0

f2(τ)e−m2τ ln
g1(y(t− τ))

g1(y)
dτ

+
p

η1
g4(z)(g1(y

∗
1)− g1(y∗3)) +

aq

kη1η2
g3(w)(g2(v

∗
1)− g2(v∗3)).

We obtain
dV1(t)

dt
=(n(x)− n(x∗1))

(
1− f(x∗1, y

∗
1, v
∗
1)

f(x, y∗1, v
∗
1)

)
+ f(x∗1, y

∗
1, v
∗
1)
g2(v)

g2(v∗1)

(
f(x, y, v)

f(x, y∗1, v
∗
1)
− 1

)(
g2(v

∗
1)

g2(v)
− f(x, y∗1, v

∗
1)

f(x, y, v)

)
− f(x∗1, y

∗
1, v
∗
1)H

(
f(x∗1, y

∗
1, v
∗
1)

f(x, y∗1, v
∗
1)

)
− f(x∗1, y

∗
1, v
∗
1)H

(
g2(v)f(x, y∗1, v

∗
1))

g2(v∗1)f(x, y, v)

)
− f(x∗1, y

∗
1, v
∗
1)

η1

∫ ∞
0

f1(τ)e−m1τH

(
g1(y

∗
1)f(x(t− τ), y(t− τ), v(t− τ))

g1(y)f(x∗1, y
∗
1, v
∗
1)

)
dτ

− f(x∗1, y
∗
1, v
∗
1)

η2

∫ ∞
0

f2(τ)e−m2τH

(
g2(v

∗
1)g1(y(t− τ))

g2(v)g1(y∗1))

)
dτ

+
p

η1
g4(z)(g1(y

∗
1)− g1(y∗3)) +

aq

kη1η2
g3(w)(g2(v

∗
1)− g2(v∗3)).

From the Hypothesis H1-H4, we have

(n(x)− n(x∗1))

(
1− f(x∗1, y

∗
1, v
∗
1)

f(x, y∗1, v
∗
1)

)
≤ 0,

and (
f(x, y, v)

f(x, y∗1, v
∗
1)
− 1

)(
g2(v

∗
1)

g2(v)
− f(x, y∗1, v

∗
1)

f(x, y, v)

)
≤ 0.

From Lemma 4.1 and 4.2, we get g1(y∗1) ≤ g1(y
∗
3) and g2(v∗1) ≤ g2(v

∗
3) if R1 ≤ 1 and R2 ≤ 1. Thus,

we have dV1(t)
dt ≤ 0. Let the largest invariant set M1 = {(x(t), y(t), v(t), z(t), w(t)) ∈ Γ : dV1(t)

dt = 0}.
Obviously, dV1(t)

dt = 0 if and only if x(t) = x∗1, y(t) = y∗1, v(t) = v∗1, z(t) = 0, and w(t) = 0.

Therefore, the largest invariant set M1 is singleton {E1}. Clearly, the global asymptotic stability of
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equilibrium E1 following from LaSalleï¿œï¿œs invariance principle (Kuang 1993). This completes
the proof. �

4.3. Stability of Equilibrium E2

Lemma 4.5.

IfR1 > 1 andR3 ≤ 1. LetE4 = (x4, y4, v4, z4, w4 ) be the solution of equation (3.1) with v4 = g−12 (hr )

and y4 = g−11 ( bc), then for equilibrium E2 = (x∗2, y
∗
2, v
∗
2, 0, w

∗
2), y∗2 ≤ y4.

Proof:

Since y4 = g−11 ( bc), v4 = g−12 (hr ), and x4 = x∗2. Compared with E4, we obtain x4 = x∗4 and v4 = v∗4.
When R3 ≤ 1,we have z4 < 0. Because equilibrium E2 and equilibrium E4 satisfy the second
equations of the system

η1f(x∗2, y
∗
2, v
∗
2) = ag1(y

∗
2), (4.7)

η1f(x4, y4, v4) = ag1(y4) + pg1(y4)g4(z4), (4.8)

it followings that y∗2 ≤ y4 if R1 > 1 and R3 > 1. This completes the proof. �

Theorem 4.6.

If R1 > 1 and R3 ≤ 1, then infection equilibrium E2 with only antibody immune response is
globally asymptotically stable.

Proof:

We construct a Lyapunov functional V2(t) : Γ→ R as follows:

V2(t) =x(t)−
∫ x(t)

x∗
2

f(x∗2, y
∗
2, v
∗
2)

f(θ, y∗2, v
∗
2)

dθ +
1

η1

(
y(t)−

∫ y(t)

y∗2

g1(y
∗
2)

krg1(θ)
dθ

)

+
a

kη1η2

(
v(t)−

∫ v(t)

v∗2

g2(v
∗
2)

g2(θ)
dθ

)
+

p

cη1
z(t) +

aq

rkη1η2

(
w(t)−

∫ w(t)

w∗
2

g3(w
∗
2)

g3(θ)
dθ

)

+
f(x∗2, y

∗
2, v
∗
2)

η1

∫ ∞
0

f1(τ)e−m1τ

∫ 0

−τ
H

(
f(x(t+ s), y(t+ s), v(t+ s))

f(x∗2, y
∗
2, v
∗
2)

)
dsdτ

+
f(x∗2, y

∗
2, v
∗
2)

η2

∫ ∞
0

f2(τ)e−m2τ

∫ 0

−τ
H

(
g1(y(t+ s))

g1(y∗2)

)
dsdτ.
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Calculating the derivative of V2(t) along solutions of system (1.3), we have

dV2(t)

dt
=

(
1− f(x∗2, y

∗
2, v
∗
2)

f(x, y∗2, v
∗
2)

)
x′(x)) +

1

η1

(
1− g1(y

∗
2)

g1(y)

)
y′(t)

+
a

g2(v∗2)(kη1η2)
v′(t) +

p

cη1
z′(t) +

aq

rkη1η2

(
1− g3(w

∗
2)

g3(w)

)
w′(t)

+
f(x∗2, y

∗
2, v
∗
2)

η1

∫ ∞
0

f1(τ)e−m1τ

(
f(x, y, v)

f(x∗2, y
∗
2, v
∗
2)

− f(x(t− τ), y(t− τ), v(t− τ))

f(x∗2, y
∗
2, v
∗
2)

+ ln
f(x(t− τ), y(t− τ), v(t− τ))

f(x, y, v)

)
dτ

+
f(x∗2, y

∗
2, v
∗
2)

η2

∫ ∞
0

f2(τ)e−m2τ

(
g1(y)

g1(y∗2)
− g1(y(t− τ))

g1(y∗2)
+ ln

g1(y(t− τ))

g1(y)

)
dτ.

Note that

n(x2) = f(x∗2, y
∗
2, v
∗
2) =

ag1(y
∗
2)

η1
=

ak

u+ qg3(w∗2)
, g2(v

∗
2) =

h

r
.

Consequently

dV2(t)

dt
=(n(x)− n(x∗2))

(
1− f(x∗2, y

∗
2, v
∗
2)

f(x, y∗2, v
∗
2)

)
+ f(x∗2, y

∗
2, v
∗
2)

(
−1 +

g2(v)f(x, y∗2, v
∗
2)

g2(v∗2)f(x, y, v)
+

f(x, y, v)

f(x, y∗2, v
∗
2)
− g2(v)

g2(v∗2)

)
+ f(x∗2, y

∗
2, v
∗
2)

(
1− 1

η1

∫ ∞
0

f1(τ)e−m1τ g1(y
∗
2)f(x(t− τ), y(t− τ), v(t− τ))

g1(y)f(x, y, v)
dτ

)
+ f(x∗2, y

∗
2, v
∗
2)

(
1− 1

η2

∫ ∞
0

f2(τ)e−m2τ g2(v
∗
2)g1(y(t− τ))

g2(v)g1(y)
dτ

)
+
f(x∗2, y

∗
2, v
∗
2)

η1

∫ ∞
0

f1(τ)e−m1τ ln
f(x(t− τ), y(t− τ), v(t− τ))

f(x, y, v)
dτ

+
f(x∗2, y

∗
2, v
∗
2)

η2

∫ ∞
0

f2(τ)e−m2τ ln
g1(y(t− τ))

g1(y)
dτ

+
p

η1
g4(z)(g1(y

∗
1)− g1(y4))

dV2(t)

dt
=(n(x)− n(x∗2))

(
1− f(x∗2, y

∗
2, v
∗
2)

f(x, y∗2, v
∗
2)

)
+ f(x∗2, y

∗
2, v
∗
2)
g2(v)

g2(v∗2)

(
f(x, y, v)

f(x, y∗2, v
∗
2)
− 1

)(
g1(v

∗
2)

g2(v)
− f(x, y∗2, v

∗
2)

f(x, y, v)

)
− f(x∗2, y

∗
2, v
∗
2)

[
H

(
f(x∗2, y

∗
2, v
∗
2)

f(x, y∗2, v
∗
2)

)
−H

(
g2(v)f(x, y∗2, v

∗
2)

g2(v∗2)f(x, y, v)

)]
− f(x∗2, y

∗
2, v
∗
2)

η1

∫ ∞
0

f1(τ)e−m1τH

(
g1(y

∗
2)f(x(t− τ), y(t− τ), v(t− τ))

g1(y)f(x∗2, y
∗
2, v
∗
2)

)
dτ

− f(x∗2, y
∗
2, v
∗
2)

η2

∫ ∞
0

f2(τ)e−m2τH

(
g1(y(t− τ))g2(v

∗
2))

g1(y∗2)g2(v)

)
dτ

+
p

η1
g4(z)(g1(y

∗
2)− g1(y4)).
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From the Hypothesis H1-H4, we have

(n(x)− n(x∗2))

(
1− f(x∗2, y

∗
2, v
∗
2)

f(x, y∗2, v
∗
2)

)
≤ 0,

and (
f(x, y, v)

f(x, y∗2, v
∗
2)
− 1

)(
g2(v

∗
2)

g2(v)
− f(x, y∗2, v

∗
2)

f(x, y, v)

)
≤ 0,

Lemma 4.3 implies g1(y∗2) ≤ g1(y4), we obtain dV2(t)
dt = 0 if and only if x(t) = x∗2, y(t) = y∗2, v(t) =

v∗2, z(t) = 0 and w(t) = w∗2. Therefore, the largest invariant set in {(x, y, v, z, w) ∈ Γ : dV2(t)
dt = 0}

is singleton E2. From LaSalle’s invariance principle (Kuang 1993), the equilibrium E2 of system
(1.3) is globally asymptotically stable. This completes the proof. �

4.4. Stability of Equilibrium E3

Lemma 4.7.

If R2 > 1 and R4 ≤ 1, Let E4 = (x4, y4, v4, z4, w4) be the solution of (3.1) with v4 = g−12 (hr ) and
y4 = g−11 ( bc), then infection equilibrium E3 = (x∗3, y

∗
3, v
∗
3, z
∗
3 , 0), we have v∗3 ≤ v4.

Proof:

It is similar to the proof of lemma 4.3. �

Theorem 4.8.

If R2 > 1 and R4 ≤ 1, then infection equilibrium E3 with only CTL immune response is globally
asymptotically stable.

Proof:

Define V3(t) : Γ→ R as follows:

V3(t) =x(t)−
∫ x(t)

x∗
3

f(x∗3, y
∗
3, v
∗
3)

f(θ, y∗3, v
∗
3)
dθ +

1

η1

(
y(t)−

∫ y(t)

y∗3

g1(y
∗
3)

g1(θ)
dθ

)

+
a+ pg4(z

∗
3)

kη1η2

(
v(t)−

∫ v(t)

v∗3

g2(v
∗
3)

g2(θ)
dθ

)

+
p

cη1

(
z(t)−

∫ z(t)

z∗3

g4(z
∗
3)

g4(θ)
dθ

)
+
a+ pg4(z

∗
3)

kη1η2
w(t)

+
f(x∗3, y

∗
3, v
∗
3)

η1

∫ ∞
0

f1(τ)e−m1τ

∫ 0

−τ
H

(
f(x(t+ s), y(t+ s), v(t+ s))

f(x∗3, y
∗
3v
∗
3)

)
dsdτ

+
a+ pg4(z

∗
3)

kη1η2

∫ ∞
0

f2(τ)e−m2τ

∫ 0

−τ
H

(
g1(y(t+ s))

g1(y∗3)

)
dsdτ.
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Calculating the derivative of V3(t) along solutions of system (1.3), we have

dV3(t)

dt
=

(
1− f(x∗3, y

∗
3, v
∗
3)

f(x, y∗3, v
∗
3)

)
x′(t) +

1

η1

(
1− g1(y

∗
3)

g1(y)

)
y′(t)

+
a+ pg4(z

∗
3)

kη1η2

(
1− g2(v

∗
3)

g2(v)

)
v′(t) +

p

cη1
z′(t) +

a+ pg4(z
∗
3)

rkη1η2
w′(t)

+
f(x∗3, y

∗
3, v
∗
3)

η1

∫ ∞
0

f1(τ)e−m1τ

(
f(x, y, v)

f(x∗3, y
∗
3, v
∗
3)

− f(x(t− τ), y(t− τ), v(t− τ))

f(x∗3, y
∗
3, v
∗
3)

+ ln
f(x(t− τ), y(t− τ), v(t− τ))

f(x, y, v)

)
dτ

+
a+ pg4(z

∗
3)

η1η2

∫ ∞
0

f2(τ)e−m2τ

(
g1(y)

g1(y∗3)
− g1(y(t− τ))

g1(y∗3)
+ ln

g1(y(t− τ))

g1(y)

)
dτ.

Note that

n(x∗3) = f(x∗3, y
∗
3, v
∗
3) =

(a+ pg4(z
∗
3))g1(y

∗
3)

η1
=
u(a+ pg4(z

∗
3))g2(v

∗
3)

kη1η2
, g1(y

∗
3) =

b

c
.

Consequently

dV3(t)

dt
=(n(x)− n(x∗3))

(
1− f(x∗3, y

∗
3, v
∗
3)

f(x, y∗3, v
∗
3)

)
+ f(x∗3, y

∗
3, v
∗
3)

(
−1 +

g2(v)f(x, y∗3, v
∗
3)

g2(v∗3)f(x, y, v)
+

f(x, y, v)

f(x, y∗3, v
∗
3)
− g2(v)

g2(v∗3)

)
+ f(x∗3, y

∗
3, v
∗
3)

(
1−

∫ ∞
0

f1(τ)e−m1τ g1(y
∗
3)f(x(t− τ), y(t− τ), v(t− τ))

g1(y)f(x∗3, y
∗
3, v
∗
3)

dτ

)
+ f(x∗3, y

∗
3, v
∗
3)

(
1− g2(v)

g2(v∗3)
− 1

η2

∫ ∞
0

f2(τ)e−m2τ ln
g1(y(t− τ))g2(v

∗
3)

g1(y∗3))g2(v)
dτ

)
+
f(x∗3, y

∗
3, v
∗
3)

η1

∫ ∞
0

f1(τ)e−m1τ ln
f(x(t− τ), y(t− τ), v(t− τ))

f(x, y, v)
dτ

+
f(x∗3, y

∗
3, v
∗
3)

η1η2

∫ ∞
0

f2(τ)e−m2τ ln
g1(y(t− τ))

g1(y∗3)
dτ

+
(a+ pg4(z

∗
3))q

kη1η2
g3(w)(g2(v

∗
3)− g2(v4))

=(n(x)− n(x∗3))

(
1− f(x∗3, y

∗
3, v
∗
3)

f(x, y∗3, v
∗
3)

)
+ f(x∗3, y

∗
3, v
∗
3)
g2(v)

g2(v∗3)

(
f(x, y, v)

f(x, y∗3, v
∗
3)
− 1

)(
g2(v

∗
3)

g2(v)
− f(x, y∗3, v

∗
3)

f(x, y, v)

)
− f(x∗3, y

∗
3, v
∗
3)

[
H

(
f(x∗3, y

∗
3, v
∗
3)

f(x, y∗3, v
∗
3)

)
−H

(
g2(v)f(x, y∗3, v

∗
3))

g2(v∗3)f(x, y, v)

)]
− f(x∗3, y

∗
3, v
∗
3)

η1

∫ ∞
0

f1(τ)e−m1τH

(
g1(y

∗
3)f(x(t− τ), y(t− τ), v(t− τ))

g1(y)f(x, y, v)

)
dτ

− f(x∗3, y
∗
3, v
∗
3)

η2

∫ ∞
0

f2(τ)e−m2τH

(
g2(v

∗
3)g1(y(t− τ))

g2(v)g1(y∗1))

)
dτ

+
(a+ pg4(z

∗
3))q

kη1η2
g3(w)(g2(v

∗
3)− g2(v4)).
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From the Hypothesis H1-H4, we have

(n(x)− n(x∗3))

(
1− f(x∗3, y

∗
3, v
∗
3)

f(x, y∗3, v
∗
3)

)
≤ 0,

and (
f(x, y, v)

f(x, y∗3, v
∗
3)
− 1

)(
g2(v

∗
3)

g2(v)
− f(x, y∗3, v

∗
3)

f(x, y, v)

)
≤ 0.

Lemma 4.4 implies v∗3 ≤ v4, Clearly, dV3(t)
dt ≤ 0. Let M3 = {(x, y, v, z, w) ∈ Γ : dV3(t)

dt = 0}. It can
be varified dV3(t)

dt = 0 if and only if x(t) = x∗3, y(t) = y∗3, v(t) = v∗3, z(t) = z∗3 , and w(t) = 0. Thus,
the largest invariant set in M3 is singleton {E3}. From LaSalleï¿œï¿œs invariance principle (Kuang
1993), then equilibrium E3 of system (1.3) is globally asymptotically stable.
This completes the proof. �

4.5. Stability of Equilibrium E4

Theorem 4.9.

If R3 > 1 and R4 > 1, then infection equilibrium E4 with both CTL and antibody immune response
is globally asymptotically stable.

Proof:

We construct a Lyapunov functional V4(t) : Γ→ R as follows:

V4(t) =x(t)−
∫ x(t)

x∗
4

f(x∗4, y
∗
4, v
∗
4)

f(θ, y∗4, v
∗
4)

dθ +
1

η1

(
y(t)−

∫ y(t)

y∗4

g1(y
∗
4)

g1(θ)
dθ

)

+
a+ pg4(z

∗
4)

kη1η2

(
v(t)−

∫ v(t)

v∗4

g2(v
∗
4)

g2(θ)
dθ

)
+

p

cη1

(
z(t)−

∫ z(t)

z∗4

g4(z
∗
4)

g4(θ)
)dθ

)

+
(a+ pg4(z

∗
4))q

rkη1η2

(
w(t) +

∫ w(t)

w∗
4

g3(w
∗
4)

g3(θ)
dθ

)

+
f(x∗4, y

∗
4, v
∗
4)

η1

∫ ∞
0

f1(τ)e−m1τ

∫ 0

−τ
H

(
f(x(t+ s), y(t+ s), v(t+ s))

f(x∗4, y
∗
4, v
∗
4)

)
dsdτ

+
(a+ pg4(z

∗
4))g1(y4)

η1η2

∫ ∞
0

f2(τ)e−m2τ

∫ 0

−τ
H

(
g1(y(t+ s))

g1(y∗4)

)
dsdτ.
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Take advantage of the above similar method, we obtain

dV4(t)

dt
=(n(x)− n(x∗4))

(
1− f(x∗4, y

∗
4, v
∗
4)

f(x, y∗4, v
∗
4)

)
+ f(x∗4, y

∗
4, v
∗
4)
g2(v)

g2(v∗4)

(
f(x, y, v)

f(x, y∗4, v
∗
4)
− 1

)(
g2(v

∗
4)

g2(v)
− f(x, y∗4, v

∗
4)

f(x, y, v)

)
− f(x∗4, y

∗
4, v
∗
4)H

(
f(x∗4, y

∗
4, v
∗
4)

f(x, y∗4, v
∗
4)

)
− f(x∗4, y

∗
4, v
∗
4)H

(
g2(v)f(x, y∗4, v

∗
4)

g2(v∗4)f(x, y, v)

)
− f(x∗4, y

∗
4, v
∗
4)

η1

∫ ∞
0

f1(τ)e−m1τH

(
g1(y

∗
4)f(x(t− τ), y(t− τ), v(t− τ))

g1(y)f(x∗4, y
∗
4, v
∗
4)

)
dτ

− f(x∗4, y
∗
4, v
∗
4)

η2

∫ ∞
0

f2(τ)e−m2τH

(
g2(v

∗
4)g1(y(t− τ))

g2(v)g1(y∗4))

)
dτ.

From the Hypothesis H1-H4, we have

(n(x)− n(x∗4))

(
1− f(x∗4, y

∗
4, v
∗
4)

f(x, y∗4, v
∗
4)

)
≤ 0,

and (
f(x, y, v)

f(x, y∗4, v
∗
4)
− 1

)(
g2(v

∗
4)

g2(v)
− f(x, y∗4, v

∗
4)

f(x, y, v)

)
≤ 0.

Thus, we have dV4(t)
dt ≤ 0, and we can certify that dV4(t)

dt = 0 if and only if x(t) = x∗4, y(t) =

y∗4, v(t) = v∗4, z(t) = z∗4 , and w(t) = w∗4. Obviously, the largest invariant set in {(x, y, v, z, w) ∈ Γ :
dV4(t)
dt = 0} is singleton {E4}. Thus, the global asymptotic stability of equilibrium E4 following

from LaSalleï¿œï¿œs invariance principle (Kuang 1993). This completes the proof. �

5. Numerical simulations

To verify the main analytic results, we choose n(x(t)) = λ− dx(t) and f(x(t), y(t), v(t)) = βx(t)v(t)
x(t)+y(t)

(Kuang 1993), g1(y(t)) = y(t), g2(v(t)) = v(t), g3(w(t)) = w(t), g4(z(t)) = z(t) and fi(τ) = rie
−riτ ,

i = 1, 2, (Elaiw and Alshamrani 2015).
Then, system (1.3) can be transformed into:

dx(t)
dt = λ− dx(t)− βx(t)v(t)

x(t)+y(t) ,

dy(t)
dt = r1

∫∞
0 e−(r1+m1)τ βx(t−τ)v(t−τ)

x(t−τ)+y(t−τ)dτ − ay(t)− py(t)z(t),

dv(t)
dt = kr2

∫∞
0 e−(r2+m2)τy(t− τ)dτ − uv(t)− qv(t)w(t),

dz(t)
dt = cy(t)z(t)− bz(t),

dw(t)
dt = rv(t)w(t)− hw(t).

(5.1)

Parameters, their symbols, meanings, default values, and units are showed in Table 1.
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Table 1. Parameters, their symbols, meanings and default values are use in model (5.1)

Parameter Meaning Range Unit

λ Source rate of uninfected cells [4.33×105, 5.85×105] cell ml−1 day−1

d Death rate of uninfected cells 0.039 day−1

β Average of infection [2.5×10−4, 0.5] cell virion−1 day−1

r1 A parameter of f1(τ) = r1e
−r1τ 0.1 day

r2 A parameter of f2(τ) = r2e
−r2τ 0.1 day

m1 e−m1τ denotes the survive rate of [0.01, 3] day
infected cells by virus

m2 e−m2τ denotes the survive rate of [0.011, 3] day
infected cells

a Death rate of infected cells 0.0693 day−1

p Clearance rate of infection 0.00064 ml cell−1 day−1

k The rate of production the virus [2, 1250] virion cell−1 day−1

u Clearance rate of virus [0.3466, 2.4] day−1

q Clearance rate of antibodies 0.5 ml cell−1 day−1

c Activation rate of antibodies varied ml cell−1 day−1

b Death rate of antibodies 0.1 day−1

r Activation rate of CTL cells varied ml virion−1 day−1

h Death rate of CTL cells 0.5 day−1

The infection-free equilibrium, the immune-free equilibrium, the infection equilibrium with only
antibody immune responses, the infection equilibrium with only CTL immune responses, and
the infection equilibrium with both CTL and antibody immune responses of system (5.1) are
also denoted by E0 = (x∗0, 0, 0, 0, 0), E1 = (x∗1, y

∗
1, v

∗
1, 0, 0), E2 = (x∗2, y

∗
2, v

∗
2, 0, w∗2),

E3 = (x∗3, y
∗
3, v

∗
3, z

∗
3 , 0), and E4 = (x∗4, y

∗
4, v

∗
4, z

∗
4 , w

∗
4), respectively.

More concretely, for system (5.1),

x∗0 =
λ

d
, x∗1 =

λr1 − a(r1 +m1)M
∗

dr1
, y∗1 = M∗, v∗1 =

kr2M
∗

u(r2 +m2)
,

x∗2 =
λr1 − a(r1 +m1)N

∗

dr1
, y∗2 = N∗, v∗2 =

h

r
, w∗2 =

krr2N
∗ − uh(r2 +m2)

qh(r2 +m2)
,

x∗3 = P ∗, y∗3 =
b

c
, v∗3 =

kr2b

uc(r2 +m2)
,

z∗3 =
cβkr1r2bP

∗ − abu(r1 +m1)(r2 +m2)(cP
∗ + b)

pbu(r1 +m1)(r2 +m2)(cP ∗ + b)
,

x∗4 = Q∗, y∗4 =
b

c
, v∗4 =

h

r
, z∗4 =

r1βhc
2Q∗ − abr(r1 +m1)(cQ

∗ + b)

pbr(r1 +m1)(cQ∗ + b)
,

w∗4 =
bkrr2 − uhc(r2 +m2)

cqh(r2 +m2)
,
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where;

M∗ =
λr21r2βk − λr1ua(r1 +m1)(r2 +m2)

a[βkr21r2 + βkr1r2m1 − ua(r1 +m1)2(r2 +m2) + udr1(r1 +m1)(r2 +m2)]
,

N∗ =
r1(r1βλ− ar1β − aβm1 − aλr1 − aλm1)

a(r1 +m1)[1− a(r1 +m1)]
,

P ∗ =

√
λb
dc + dbu(r2 +m2) + βkr2b− λcu(r2 +m2)− u(r2 +m2)(db+ λc)− βkr2b

2dcu(r2 +m2)
.

and

Q∗ =

√
4λbcdr2 + λcr − bdr − cβh

2cdr
.

Furthermore, we can obtain R0, R1, R2, R3, and R4 of system (5.1), respectively:

R0 =
kr1r2β

au((r1 +m1)(r2 +m2)
,

R1 =
kr1r2β

u((r1 +m1)(r2 +m2)
· x∗2
x∗2 + y∗2

,

R2 =
kr1r2β

au((r1 +m1)(r2 +m2)
· x∗3
x∗3 + y∗3

,

R3 =
cβr1

ab(r1 +m1)
· x∗4v

∗
4

x∗4 + y∗4
,

and

R4 =
kbrr2

uch(r2 +m2)
.

Next step we introduce two new variables:

T (t) =

∫ ∞
0

e−(r1+m1)τ βx(t− τ)v(t− τ)

x(t− τ) + y(t− τ)
dτ,

and

U(t) =

∫ ∞
0

e−(r2+m2)τy(t− τ)dτ.

It is easy to see that variables x(t), T (t), y(t), U(t), v(t), z(t), and w(t) satisfy the following ODEs
without time delays:
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dx(t)
dt = λ− dx(t)− βx(t)v(t)

x(t)+y(t) ,

dT (t)
dt = βx(t)v(t)

x(t)+y(t) − (r1 +m1)T (t),

dy(t)
dt = r1T (t)− ay(t)− py(t)z(t),

dU(t)
dt = y(t)− (r2 +m2)U(t),

dv(t)
dt = kr2U(t)− uv(t)− qv(t)w(t),

dz(t)
dt = cy(t)z(t)− bz(t),

dw(t)
dt = rv(t)w(t)− hw(t).

(5.2)

The initial values for system (5.2) are x(0) = I1, y(0) = I2, v(0) = I3, z(0) = I4, w(0) = I5,
T (0) = I6 = β

r1+m1
· I1I3
I1+I2

, U(0) = I7 = I2
r2+m2

. The asymptotic behaviors of the variables x, y, v, z,
and w in the system (5.1) are obtained by selecting the appropriate parameters and simulating the
asymptotic behaviors of the corresponding variables x, y, v, z, and w in the auxiliary system (5.2).
We simulate the results of Theorem 4.1, Theorem 4.4, Theorem 4.6, Theorem 4.8, and Theorem
4.9. For each result, we give different parameter values and three sets of initial values. Five figures
are obtained. Each picture has a real line, a dotted line and a point line, and they are the results of
the simulation corresponding to the different initial values.

The values of ten parameters remain unchanged in all of the five figures, and they are shown in
Table 2. The other six changing parameters are illustrated below each corresponding picture. The

Table 2. Simulation parameters

Parameter Value Unit

λ 50400 cell ml−1 day−1

d 0.039 day−1

r1 0.1 day
r2 0.1 day
a 0.0693 day−1

p 0.00064 ml cell−1 day−1

u 0.67 day−1

q 0.5 ml cell−1 day−1

b 0.1 day−1

h 0.5 day−1
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three sets of initial conditions are exhibited in Table 3 and Table 4.

Table 3. Three sets of different initial values

Initial Value I1 I2 I3 I4 I5

IV1, IIV1, IIIV1, IVV1, VV1 700 1 6 20 30
IV2, IIV2, IIIV2, IVV2, VV2 400 3 7 30 40
IV3, IIV3, IIIV3, IVV3, VV3 60 6 9 40 50

Unit cell ml−1 cell ml−1 day−2 cell ml−1 cell ml−1 day−1 virion ml−1

Table 4. Three sets of different initial values

Initial Value I6 I7

IV1 0.0545 0.3266
IV2 0.0632 0.9677
IV3 0.0744 1.9355
IIV1 0.4639 0.3226
IIV2 0.8066 0.9677
IIV3 0.6333 1.9355
IIIV1 19.6082 9.0909
IIIV2 34.1074 27.2727
IIIV3 26.7766 54.5455
IVV1 0.6958 0.3266
IVV2 1.2100 0.9677
IVV3 0.9499 1.9355
VV1 2.5055 0.9091
VV2 4.3584 2.7273
VV3 3.4216 5.4545
Unit cell ml−1 cell ml−1

24

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 2, Art. 7

https://digitalcommons.pvamu.edu/aam/vol13/iss2/7



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 701

0 50 100 150 200 250 300 350 400 450 500

Days

0

2

4

6

8

10

12

14

S
u

s
c
e
p

ti
b

le
 c

e
ll
s

×10
5

IV1

IV2

IV3

0 50 100 150 200 250 300 350 400 450 500

Days

-1

0

1

2

3

4

5

6

In
fe

c
te

d
 c

e
ll
s

IV1

IV2

IV3

0 50 100 150 200 250 300 350 400 450 500

Days

0

1

2

3

4

5

6

7

8

9

10

F
re

e
 v

ir
u

s

IV1

IV2

IV3

0 50 100 150 200 250 300 350 400 450 500

Days

0

5

10

15

20

25

30

35

40

C
T

L
 c

e
ll
s

IV1

IV2

IV3

0 50 100 150 200 250 300 350 400 450 500

Days

0

5

10

15

20

25

30

35

40

45

50

A
n

ti
b

o
d

ie
s

IV1

IV2

IV3

Figure 1. The behavior of the infection dynamics of system (5.1) for β = 0.01 cell virion−1 day−1, k = 100 virion
cell−1 day−1, c = 10−3 ml cell−1 day−1, r = 4.4× 10−4 ml virion−1 day−1, m1 = 1 day, m2 = 3 day.
For the parameters used in this case, the threshold valueR0 = 0.0632 < 1, and the infection-free equilibrium
E0 is globally asymptotically stable.
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Figure 2. The behavior of the infection dynamics of system (5.1) for β = 0.24 cell virion−1 day−1, k = 200 virion
cell−1 day−1, c = 10−10 ml cell−1 day−1, r = 4.4 × 10−7 ml virion−1 day−1, m1 = 3 day, m2 = 3
day. For the parameters used in this case, the threshold values R0 = 1.0757 > 1, R1 = 0.6571 < 1, and
R2 = 0.9989 < 1, then the immune-free infection equilibrium E1 is globally asymptotically stable.
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Figure 3. The behavior of the infection dynamics of system (5.1) for β = 0.36 cell virion−1 day−1, k = 200 virion
cell−1 day−1, c = 10−8 ml cell−1 day−1, r = 4.4×10−7 ml virion−1 day−1,m1 = 0.01 day,m2 = 0.01
day. For the parameters used in this case, the threshold valuesR1 = 17836.1183 > 1, andR3 = 0.0328 < 1,
then the infection equilibrium E2 with only antibody immune response is globally asymptotically stable.
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Figure 4. The behavior of the infection dynamics of system (5.1) for β = 0.36 cell virion−1 day−1, k = 200 virion
cell−1 day−1, c = 10−3 ml cell−1 day−1, r = 4.4× 10−7 ml virion−1 day−1, m1 = 3 day, m2 = 3 day.
For the parameters used in this case, the threshold values R2 = 1.6134 > 1, and R4 = 8.4738× 10−4 < 1,
then the infection equilibrium E3 with only CTL immune response is globally asymptotically stable.
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Figure 5. The behavior of the infection dynamics of system (5.1) for β = 0.46 cell virion−1 day−1, k = 1000 virion
cell−1 day−1, c = 10−4 ml cell−1 day−1, r = 4.4× 10−5 ml virion−1 day−1, m1 = 1 day, m2 = 1 day.
For the parameters used in this case, the threshold values R3 = 6.8513 > 1, and R4 = 11.9403 > 1, then
the infection equilibrium E4 with both CTL and antibody immune response is globally asymptotically stable.
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6. Conclusion

In this research, we propose an virus model, which describes the dynamics among susceptible tar-
get cells, infected target cells, virus, antibodies and CTL cells. The virus infection model with two
distributed delays, general target-cell dynamics, nonlinear infection rate and adaptive immunity.
And our model contains many models of the literatures as special cases.

It proves that system (1.3) has five possible equilibria: infection-free equilibrium E0, immune-free
equilibrium E1, infection equilibrium E2 with only CTL immune response, infection equilibrium
E3 with only antibody immune response, infection equilibrium E4 with CTL and antibody im-
mune responses. Meanwhile, we have derived five critical threshold parameters: the reproductive
numbers for viral infection R0, for CTL immune response R1, for antibody immune response R2,
for CTL immune competition R3 and for antibody immune competition R4. From insection 5,
we know that the stabilities of the five equilibria depend on the according threshold parameters.
More concretely, (i) when R0 ≤ 1, then infection-free equilibrium E0 is globally asymptotically
stable. (ii) The immune-free equilibrium E1 is globally asymptotically stable if R0 > 1, R1 ≤ 1

and R2 ≤ 1. (iii) when R1 > 1 and R3 ≤ 1, then infection equilibrium E2 with only CTL immune
response is is globally asymptotically stable. (iv) The infection equilibrium E3 with only antibody
immune response is globally asymptotically stable if R2 > 1 and R4 ≤ 1. (v) when R3 ≤ 1 and
R4 ≤ 1, then infection equilibrium E4 with both CTL and antibody immune response is globally
asymptotically stable.

Furthermore, it is more reasonable to introduce antibody and CTL response distributed delays to
the model. In this way, the model studied will have four distributed delays and it is more difficult
to investigate the dynamics of the model such as asymptotic behaviors of the equilibria. Due to
the introduction of immune delay, the model may cause periodic oscillations via Hopf bifurations.
Some work can be referred to the literatures Xu and Liao (2013), Xu and Li (2013).We leave it for
the further work.
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