2 research outputs found

    Pulsed ESR Dipolar Spectroscopy for Distance Measurements in Immobilized Spin Labeled Proteins in Liquid Solution

    No full text
    Pulsed electron spin resonance (ESR) dipolar spectroscopy (PDS) in combination with site-directed spin labeling is unique in providing nanometer-range distances and distributions in biological systems. To date, most of the pulsed ESR techniques require frozen solutions at cryogenic temperatures to reduce the rapid electron spin relaxation rate and to prevent averaging of electron–electron dipolar interaction due to the rapid molecular tumbling. To enable measurements in liquid solution, we are exploring a triarylmethyl (TAM)-based spin label with a relatively long relaxation time where the protein is immobilized by attachment to a solid support. In this preliminary study, TAM radicals were attached via disulfide linkages to substituted cysteine residues at positions 65 and 80 or 65 and 76 in T4 lysozyme immobilized on Sepharose. Interspin distances determined using double quantum coherence (DQC) in solution are close to those expected from models, and the narrow distance distribution in each case indicates that the TAM-based spin label is relatively localized

    Conformational Flexibility Enables the Function of a BECN1 Region Essential for Starvation-Mediated Autophagy

    No full text
    BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron–electron resonance–electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy
    corecore