12 research outputs found

    Land use change and climate variation in the Three Gorges Reservoir Catchment from 2000 to 2015 based on the Google Earth Engine

    Get PDF
    Possible environmental change and ecosystem degradation have received increasing attention since the construction of Three Gorges Reservoir Catchment (TGRC) in China. The advanced Google Earth Engine (GEE) cloud-based platform and the large number of Geosciences and Remote Sensing datasets archived in GEE were used to analyze the land use and land cover change (LULCC) and climate variation in TGRC. GlobeLand30 data were used to evaluate the spatial land dynamics from 2000 to 2010 and Landsat 8 Operational Land Imager (OLI) images were applied for land use in 2015. The interannual variations in the Land Surface Temperature (LST) and seasonally integrated normalized difference vegetation index (SINDVI) were estimated using Moderate Resolution Imaging Spectroradiometer (MODIS) products. The climate factors including air temperature, precipitation and evapotranspiration were investigated based on the data from the Global Land Data Assimilation System (GLDAS). The results indicated that from 2000 to 2015, the cultivated land and grassland decreased by 2.05% and 6.02%, while the forest, wetland, artificial surface, shrub land and waterbody increased by 3.64%, 0.94%, 0.87%, 1.17% and 1.45%, respectively. The SINDVI increased by 3.209 in the period of 2000-2015, while the LST decreased by 0.253 °C from 2001 to 2015. The LST showed an increasing trend primarily in urbanized area, with a decreasing trend mainly in forest area. In particular, Chongqing City had the highest LST during the research period. A marked decrease in SINDVI occurred primarily in urbanized areas. Good vegetation areas were primarily located in the eastern part of the TGRC, such as Wuxi County, Wushan County, and Xingshan County. During the 2000–2015 period, the air temperature, precipitation and evapotranspiration rose by 0.0678 °C/a, 1.0844 mm/a, and 0.4105 mm/a, respectively. The climate change in the TGRC was influenced by LULCC, but the effect was limited. What is more, the climate change was affected by regional climate change in Southwest China. Marked changes in land use have occurred in the TGRC, and they have resulted in changes in the LST and SINDVI. There was a significantly negative relationship between LST and SINDVI in most parts of the TGRC, especially in expanding urban areas and growing forest areas. Our study highlighted the importance of environmental protection, particularly proper management of land use, for sustainable development in the catchment

    Extracting Tea Plantations from Multitemporal Sentinel-2 Images Based on Deep Learning Networks

    No full text
    Tea is a special economic crop that is widely distributed in tropical and subtropical areas. Timely and accurate access to the distribution of tea plantation areas is crucial for effective tea plantation supervision and sustainable agricultural development. Traditional methods for tea plantation extraction are highly dependent on feature engineering, which requires expensive human and material resources, and it is sometimes even difficult to achieve the expected results in terms of accuracy and robustness. To alleviate such problems, we took Xinchang County as the study area and proposed a method to extract tea plantations based on deep learning networks. Convolutional neural network (CNN) and recurrent neural network (RNN) modules were combined to build an R-CNN model that can automatically obtain both spatial and temporal information from multitemporal Sentinel-2 remote sensing images of tea plantations, and then the spatial distribution of tea plantations was predicted. To confirm the effectiveness of our method, support vector machine (SVM), random forest (RF), CNN, and RNN methods were used for comparative experiments. The results show that the R-CNN method has great potential in the tea plantation extraction task, with an F1 score and IoU of 0.885 and 0.793 on the test dataset, respectively. The overall classification accuracy and kappa coefficient for the whole region are 0.953 and 0.904, respectively, indicating that this method possesses higher extraction accuracy than the other four methods. In addition, we found that the distribution index of tea plantations in mountainous areas with gentle slopes is the highest in Xinchang County. This study can provide a reference basis for the fine mapping of tea plantation distributions

    Ethylene glycol and glycolic acid production by wild-typeEscherichia coli

    No full text
    Ethylene glycol and glycolic acid are bulk chemicals with a broad range of applications. The ethylene glycol and glycolic acid biosynthesis pathways have been produced by microorganisms and used as a biological route for their production. Unlike the methods that use xylose or glucose as carbon sources, xylonic acid was used as a carbon source to produce ethylene glycol and glycolic acid in this study. Amounts of 4.2 g/L of ethylene glycol and 0.7 g/L of glycolic acid were produced by a wild-typeEscherichia coliW3110 within 10 H of cultivation with a substrate conversion ratio of 0.5 mol/mol. Furthermore,E. colistrains that produce solely ethylene glycol or glycolic acid were constructed. 10.3 g/L of glycolic acid was produced byE. coli Delta yqhD+aldA, and the achieved conversion ratio was 0.56 mol/mol. Similarly, theE. coli Delta aldA+yqhDproduced 8.0 g/L of ethylene glycol with a conversion ratio of 0.71 mol/mol. Ethylene glycol and glycolic acid production byE. colion xylonic acid as a carbon source provides new information on the biosynthesis pathway of these products and opens a novel way of biomass utilization

    Causal association between snoring and stroke: a Mendelian randomization study in a Chinese populationResearch in context

    No full text
    Summary: Background: Previous observational studies established a positive relationship between snoring and stroke. We aimed to investigate the causal effect of snoring on stroke. Methods: Based on 82,339 unrelated individuals with qualified genotyping data of Asian descent from the China Kadoorie Biobank (CKB), we conducted a Mendelian randomization (MR) analysis of snoring and stroke. Genetic variants identified in the genome-wide association analysis (GWAS) of snoring in CKB and UK Biobank (UKB) were selected for constructing genetic risk scores (GRS). A two-stage method was applied to estimate the associations of the genetically predicted snoring with stroke and its subtypes. Besides, MR analysis among the non-obese group (body mass index, BMI <24.0 kg/m2), as well as multivariable MR (MVMR), were performed to control for potential pleiotropy from BMI. In addition, the inverse-variance weighted (IVW) method was applied to estimate the causal association with genetic variants identified in CKB GWAS. Findings: Positive associations were found between snoring and total stroke, hemorrhagic stroke (HS), and ischemic stroke (IS). With GRS of CKB, the corresponding HRs (95% CIs) were 1.56 (1.15, 2.12), 1.50 (0.84, 2.69), 2.02 (1.36, 3.01), and the corresponding HRs (95% CIs) using GRS of UKB were 1.78 (1.30, 2.43), 1.94 (1.07, 3.52), and 1.74 (1.16, 2.61). The associations remained stable in the MR among the non-obese group, MVMR analysis, and MR analysis using the IVW method. Interpretation: This study suggests that, among Chinese adults, genetically predicted snoring could increase the risk of total stroke, IS, and HS, and the causal effect was independent of BMI. Funding: National Natural Science Foundation of China, Kadoorie Charitable Foundation Hong Kong, UK Wellcome Trust, National Key R&D Program of China, Chinese Ministry of Science and Technology
    corecore