28 research outputs found

    Two Rapid Power Iterative DOA Estimators for UAV Emitter Using Massive/Ultra-massive Receive Array

    Full text link
    To provide rapid direction finding (DF) for unmanned aerial vehicle (UAV) emitter in future wireless networks, a low-complexity direction of arrival (DOA) estimation architecture for massive multiple input multiple output (MIMO) receiver arrays is constructed. In this paper, we propose two strategies to address the extremely high complexity caused by eigenvalue decomposition of the received signal covariance matrix. Firstly, a rapid power-iterative rotational invariance (RPI-RI) method is proposed, which adopts the signal subspace generated by power iteration to gets the final direction estimation through rotational invariance between subarrays. RPI-RI makes a significant complexity reduction at the cost of a substantial performance loss. In order to further reduce the complexity and provide a good directional measurement result, a rapid power-iterative Polynomial rooting (RPI-PR) method is proposed, which utilizes the noise subspace combined with polynomial solution method to get the optimal direction estimation. In addition, the influence of initial vector selection on convergence in the power iteration is analyzed, especially when the initial vector is orthogonal to the incident wave. Simulation results show that the two proposed methods outperform the conventional DOA estimation methods in terms of computational complexity. In particular, the RPIPR method achieves more than two orders of magnitude lower complexity than conventional methods and achieves performance close to CRLB. Moreover, it is verified that the initial vector and the relative error have a significant impact on the performance of the computational complexity

    Local-Induction-Heating Bending Process of B1500HS Thin-Walled Rectangular Steel Tubes: A Simulation and Experimental Investigation

    No full text
    To lighten and stiffen the structural components used in automobile bodies, the variable curvature local-induction-heating bending forming (VC-LIHBF) technology was developed. However, few studies have been conducted on the optimization of the structural and geometric parameters of the inductor and the parameters of the LIHBF process. This paper focuses on the improvement of the cross-sectional distortion and the forming limit of the thin-walled rectangular steel tubes (TWRSTs) without the mandrel support. In this work, a coupled thermo-mechanical finite element analysis (FEA) method is developed to investigate the structural and geometric parameters of the inductor and the deformation behavior during VC-LIHBF. The temperature distribution is calculated by the electromagnetic and heat transfer analysis, and the stress distribution is obtained by the deformation analysis. Experiments were carried out to validate the reliability of the proposed finite element model (FEM). The results indicate that the forming quality of the TWRST is significantly affected by the structural and geometric parameters of the inductor, the feed rate of the tube, the push speed of the bending roller and the distance between the inductor and the bending roller. The appropriate inductor and process parameters for a B1500HS TWRST were determined. The findings of this study may provide important guidance for practical manufacturing via the LIHBF process

    EFFECT OF PLASMA NITRIDED-LAYER MICROSTRUCTURE OF 42CrMo STEEL ON IMPACT FRETTING WEAR PROPERTY

    No full text
    Plasma nitriding of the quenching and tempering 42 CrMo steel was carried out at 530 ℃ using two different N2-H2 atmospheres: 3% N2 and 80% N2,which prepared two types of samples with different compound layers,ε + γ’ compound-phase andγ’ single-phase,respectively. Impact wear tests were performed using the impact wear test rig controlled by kinetic energy. The effect of nitrided-layer microstructure control on impact fretting wear property of 42 CrMo steel was studied. The results show that the impact wear properties of 42 CrMo steel can be improved by plasma nitriding,the hardness of the plasma nitrided samples are higher than that of the 42 CrMo steel samples,and the peak impact force and energy absorption rate of the plasma nitrided samples were lower. Compared with the γ’ single-phase sample,the ε + γ’ compound phase sample show better impact wear properties due to its higher hardness and better impact dynamic response. The impact wear mechanism of 42 CrMo steel is plastic deformation,peeling wear and oxidative wear. The impact wear mechanism of nitrided samples is fatigue spalling,slight abrasive wear and oxidative wear. Plasma nitriding significantly reduces spalling and oxidation of 42 CrMo steel during impact wear,and the degree of oxidation of the wear scars on γ’ single-phase samples was slighter than that of ε + γ’ composite phase samples

    Methanol Steam Reforming over La<sub>1-x</sub>Sr<sub>x</sub>CeO<sub>3-δ</sub> Catalysts for Hydrogen Production: Optimization of Operating Parameters

    No full text
    In this study, a series of A-site strontium-doped La1-xSrxCeO3-δ (x = 0.2, 0.4, 0.6, 0.8) perovskite catalysts were synthesized via the ethylenediaminetetraacetic acid (EDTA) sol-gel method for hydrogen production by methanol steam reforming. The fresh and the reduced catalysts are characterized by scanning X-ray (XRD), energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques. Results showed that La0.6Sr0.4CeO3-δ exhibited the best performance among the La1-xSrxCeO3-δ catalysts. The operating parameters were optimized to study the catalytic performance of La0.6Sr0.4CeO3-δ, including catalytic temperature, water–methanol ratio (W/M) and liquid hourly space velocity (LHSV). However, the excessive strontium content led to a decrease in hydrogen production amount per unit time, and the high W/M promoted the reverse water–gas shift reaction (RWGS), which resulted in a decrease in CO selectivity and an increase in CO2 selectivity. In addition, the optimal reaction parameters are as follows: reforming temperature of 700 °C; W/M of 3:1; LHSV of 20 h−1. Furthermore, the methanol conversion rate of La0.6Sr0.4CeO3-δ can reach approximately 82%, the hydrogen production can reach approximately 3.26 × 10−3 mol/g(cat)/min under the optimum reaction conditions. Furthermore, La0.6Sr0.4CeO3-δ exhibits high hydrogen selectivity (85%), which is a promising catalyst for MSR application

    Methanol Steam Reforming over La1-xSrxCeO3-&delta; Catalysts for Hydrogen Production: Optimization of Operating Parameters

    No full text
    In this study, a series of A-site strontium-doped La1-xSrxCeO3-&delta; (x = 0.2, 0.4, 0.6, 0.8) perovskite catalysts were synthesized via the ethylenediaminetetraacetic acid (EDTA) sol-gel method for hydrogen production by methanol steam reforming. The fresh and the reduced catalysts are characterized by scanning X-ray (XRD), energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) techniques. Results showed that La0.6Sr0.4CeO3-&delta; exhibited the best performance among the La1-xSrxCeO3-&delta; catalysts. The operating parameters were optimized to study the catalytic performance of La0.6Sr0.4CeO3-&delta;, including catalytic temperature, water&ndash;methanol ratio (W/M) and liquid hourly space velocity (LHSV). However, the excessive strontium content led to a decrease in hydrogen production amount per unit time, and the high W/M promoted the reverse water&ndash;gas shift reaction (RWGS), which resulted in a decrease in CO selectivity and an increase in CO2 selectivity. In addition, the optimal reaction parameters are as follows: reforming temperature of 700 &deg;C; W/M of 3:1; LHSV of 20 h&minus;1. Furthermore, the methanol conversion rate of La0.6Sr0.4CeO3-&delta; can reach approximately 82%, the hydrogen production can reach approximately 3.26 &times; 10&minus;3 mol/g(cat)/min under the optimum reaction conditions. Furthermore, La0.6Sr0.4CeO3-&delta; exhibits high hydrogen selectivity (85%), which is a promising catalyst for MSR application

    Effects and Mechanisms of Tea Regulating Blood Pressure: Evidences and Promises

    No full text
    Cardiovascular diseases have overtaken cancers as the number one cause of death. Hypertension is the most dangerous factor linked to deaths caused by cardiovascular diseases. Many researchers have reported that tea has anti-hypertensive effects in animals and humans. The aim of this review is to update the information on the anti-hypertensive effects of tea in human interventions and animal studies, and to summarize the underlying mechanisms, based on ex-vivo tissue and cell culture data. During recent years, an increasing number of human population studies have confirmed the beneficial effects of tea on hypertension. However, the optimal dose has not yet been established owing to differences in the extent of hypertension, and complicated social and genetic backgrounds of populations. Therefore, further large-scale investigations with longer terms of observation and tighter controls are needed to define optimal doses in subjects with varying degrees of hypertensive risk factors, and to determine differences in beneficial effects amongst diverse populations. Moreover, data from laboratory studies have shown that tea and its secondary metabolites have important roles in relaxing smooth muscle contraction, enhancing endothelial nitric oxide synthase activity, reducing vascular inflammation, inhibiting rennin activity, and anti-vascular oxidative stress. However, the exact molecular mechanisms of these activities remain to be elucidated

    Anisotropic exchange coupling and ground state phase diagram of Kitaev compound YbOCl

    No full text
    Rare-earth chalcohalide REChX (RE = rare earth; Ch = O, S, Se, Te; X = F, Cl, Br, I) is a newly reported family of Kitaev spin liquid candidates. The family offers a platform where a strong spin-orbit coupling meets a van der Waals layered and undistorted honeycomb spin lattice, which outputs highly anisotropic exchange couplings required by the Kitaev model. YbOCl is the first single crystal of the family we grew, with a size up to ∼15mm. We have performed magnetization and high magnetic field electron spin resonance measurements from 2 to 300 K. We develop the mean-field scenario for the anisotropic spin system, with which we are able to well describe the experiments and reliably determine the fundamental parameters. The self-consistent simulations give the anisotropic spin-exchange interactions of J_{±} (∼−0.3K) and J_{zz} (∼1.6K), and g factors of g_{ab} (∼3.4) and g_{c} (∼2.9). Based on the spin-exchange interactions, we employ the exact diagonalization method to work out the ground state phase diagram of YbOCl in terms of the off-diagonal exchange couplings. The phase diagram hosting rich magnetic phases including the spin-disordered one, sheds light on the novel magnetic properties of the family, particularly the Kitaev physics

    Printable and Flexible Humidity Sensor Based on Graphene -Oxide-Supported MoTe<sub>2</sub> Nanosheets for Multifunctional Applications

    No full text
    This study focuses on a novel humidity sensor composed of graphene-oxide (GO)-supported MoTe2 nanosheets. Conductive Ag electrodes were formed on PET substrates by inkjet printing. A thin film of GO-MoTe2 was deposited on the Ag electrode used for adsorbing humidity. The experiment’s results demonstrate that MoTe2 are attached to GO nanosheets uniformly and tightly. The capacitive output of the sensors with various ratios of GO/MoTe2 has been tested for different levels of humidity (11.3–97.3%RH) at room temperature (25 °C). As a consequence, the obtained hybrid film exhibits superior sensitivity (94.12 pF/%RH). The structural integrity and interaction of different components were discussed to afford the prominent humidity sensitivity performance. Under the bending condition, the output curve of the sensor has no obvious fluctuation. This work provides a low-cost way to build flexible humidity sensors with high-performance in environmental monitoring and healthcare

    Matrix Metalloproteinase 9 Gene Promoter (rs 3918242) Mutation Reduces the Risk of Diabetic Microvascular Complications

    No full text
    Background: Many studies have evaluated the association between matrix metalloproteinase 9 (MMP9) gene promoter polymorphism and diabetic microvascular complications. However, the results are conflicting and inconclusive. The aim of this meta-analysis was to evaluate the association more precisely. Materials and Methods: Studies were retrieved from the PubMed, Embase, Medline, China National Knowledge Infrastructure, Web of Science, and Cochrane databases. All statistical analyses were performed using Review Manager 5.2. Results: Data were abstracted from four case-control studies that included 446 patients with diabetic microvascular complications and 496 diabetic control subjects. The MMP9-1562 C/T genotype was significantly associated with the risk of diabetic nephropathy after stratification by specific type of microvascular complication (CT + TT vs. CC: OR = 0.42, 95% CI = 0.26–0.69, p = 0.0006; TT vs. CC + CT: OR = 0.37, 95% CI = 0.19–0.76, p = 0.006). Conclusions: This study adds to the evidence that MMP9-1562 T gene mutation might reduce the risk of diabetic nephropathy

    Two Rapid Power Iterative DOA Estimators for UAV Emitter Using Massive/Ultra-Massive Receive Array

    Get PDF
    To provide rapid direction finding (DF) for unmanned aerial vehicle (UAV) emitters in future wireless networks, a low-complexity direction of arrival (DOA) estimation architecture for massive multiple-input multiple-output (MIMO) receiver arrays is constructed. In this paper, we propose two strategies to address the extremely high complexity caused by eigenvalue decomposition of the received signal covariance matrix. Firstly, a rapid power iterative rotational invariance (RPI-RI) method is proposed, which adopts the signal subspace generated by power iteration to obtain the final direction estimation through rotational invariance between subarrays. RPI-RI causes a significant complexity reduction at the cost of a substantial performance loss. In order to further reduce the complexity and provide good directional measurement results, the rapid power iterative polynomial rooting (RPI-PR) method is proposed, which utilizes the noise subspace combined with the polynomial solution method to obtain the optimal direction estimation. In addition, the influence of initial vector selection on convergence in the power iteration is analyzed, especially when the initial vector is orthogonal to the incident wave. Simulation results show that the two proposed methods outperform the conventional DOA estimation methods in terms of computational complexity. In particular, the RPI-PR method achieves more than two orders of magnitude lower complexity than conventional methods and achieves performance close to the Cramér–Rao Lower Bound (CRLB). Moreover, it is verified that the initial vector and the relative error have a significant impact on the performance with respect to the computational complexity
    corecore