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Abstract: To provide rapid direction finding (DF) for unmanned aerial vehicle (UAV) emitters in
future wireless networks, a low-complexity direction of arrival (DOA) estimation architecture for
massive multiple-input multiple-output (MIMO) receiver arrays is constructed. In this paper, we
propose two strategies to address the extremely high complexity caused by eigenvalue decomposition
of the received signal covariance matrix. Firstly, a rapid power iterative rotational invariance (RPI-
RI) method is proposed, which adopts the signal subspace generated by power iteration to obtain
the final direction estimation through rotational invariance between subarrays. RPI-RI causes a
significant complexity reduction at the cost of a substantial performance loss. In order to further
reduce the complexity and provide good directional measurement results, the rapid power iterative
polynomial rooting (RPI-PR) method is proposed, which utilizes the noise subspace combined with
the polynomial solution method to obtain the optimal direction estimation. In addition, the influence
of initial vector selection on convergence in the power iteration is analyzed, especially when the initial
vector is orthogonal to the incident wave. Simulation results show that the two proposed methods
outperform the conventional DOA estimation methods in terms of computational complexity. In
particular, the RPI-PR method achieves more than two orders of magnitude lower complexity than
conventional methods and achieves performance close to the Cramér–Rao Lower Bound (CRLB).
Moreover, it is verified that the initial vector and the relative error have a significant impact on the
performance with respect to the computational complexity.

Keywords: UAV; DOA; power iterative; massive MIMO; covariance matrix decomposition;
computational complexity

1. Introduction

Unmanned aerial vehicles (UAVs) play an important role in wireless communication
systems, providing stable and effective wireless connection in areas without extensive
communication infrastructure coverage [1–4]. Due to their economical and flexible arrange-
ment, UAVs are widely used in emergency rescue, traffic control, etc. [5,6]. For example,
UAVs can provide emergency communication connection to ground rescue equipment
when mountain fires occur. Compared with traditional ground-based communications,
low-altitude UAVs have shorter line-of-sight (LoS) paths, which can effectively avoid in-
terference and achieve better communication performance. However, their high mobility
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leads to rapid changes in channel state information (CSI) and ground equipment requires
fast and accurate estimation of CSI to achieve high quality communication [7].

Direction of arrival (DOA) is key information for channel estimation [8,9], which com-
bined with multiple-input multiple-output (MIMO) technology [10–12] can achieve secure
and energy-efficient UAV information transmission by providing a highly accurate desired
signal direction for directional modulation, beamforming, alignment and tracking [13,14].
In [15], the authors proposed a novel 3D framework for UAV localization; the key is to
measure the angle of arrival information.

However, due to the fact that the number of antennas tends to be massive in MIMO
systems [16,17], the computational complexity and circuit cost are too high for commercial
applications. A DOA-aided channel estimation method was proposed in [18] for a hybrid
millimeter-wave MIMO system based on a uniform planar array at the base stations, and
the theoretical bounds of the mean squared errors (MSEs) and the Cramér–Rao Lower
Bounds (CRLBs) of the joint DOA and channel gain estimation are derived. The simulation
results show that the performances of the proposed methods are close to the theoretical
MSE analysis, while the theoretical MSE is close to the CRLB. Therefore, hybrid analog and
digital (HAD) beamforming structures using a parametric method to estimate DOA have
emerged, which can achieve a good balance between beamforming computation, circuit
cost and complexity, using a parametric method to estimate DOA.

Large antenna arrays using HAD architectures can provide large apertures at low cost
and with hardware complexity, resulting in enhanced DOA estimation and reduced power
consumption. The DOA estimation and power consumption tradeoff problem for large
antenna arrays with HAD structures was presented in [19], where the fully connected, sub-
connected and switch-based hybrid architectures were formulated into a unified expression,
with the compression matrix in a time-varying form. Based on this model, the authors
derived dynamic maximum likelihood (D-ML) estimators for HAD and conventional fully
digital (FD) structures and closed expressions for CRB to evaluate the performance limits
of D-ML estimators for different HAD structures.

The authors of [20] investigated the DOA estimation using HAD structure in the
receiver part and proposed two phase alignment (PA) methods: HAD-PA and hybrid
digital and analog PA (HDA-PA). Meanwhile, for this hybrid structure, a fast Root-MUSIC-
HDAPA method was proposed to achieve an approximate analytical solution and reduce
the computational complexity. In [21], a new design of analog phase shifts was proposed
to tackle the phase ambiguities. This enables the cross-correlations to be deterministically
calibrated and constructively combined for noise-tolerant estimation of the propagation
phase offset between adjacent subarrays. It is obvious from the simulation that the estima-
tion accuracy of the method can be significantly improved by several orders of magnitude
and asymptotically approaches the MSELB. For the DF ambiguity problem caused by
HAD MIMO, a fast ambiguity phase elimination method was proposed in [22], which uses
only two data blocks to achieve DOA estimation. In [23], the DOA estimation problem
in the case of 1-bit ADC was considered. It demonstrated that the MUSIC method could
be directly applied in cases without additional preprocessing, while system performance
degradation was analyzed. The DOA estimation performance of the low-resolution ADC
structure was investigated in [24].

A generalized sparse Bayesian learning (Gr-SBL) method was considered in [25] to
solve the DOA estimation problem from one-bit quantized measurements in both single and
multi-snapshot scenarios. By formulating the one-bit DOA estimation in single-fast-tempo,
it is transformed into a generalized linear model inference problem and solved by applying
the recently proposed Gr-SBL method. Then, Gr-SBL is extended to multi-fast-tempo
scenarios by decoupling the multi-fast-tempo single-bit DOA estimation problem into a
series of single-fast-tempo subproblems. Simulation results demonstrate the effectiveness
of the Gr-SBL method. A DOA estimation method that is suitable for non-circular signals
with a single snapshot was proposed in [26]. By utilizing the waveform characteristics
of the NC signal, the proposed algorithm can enlarge the virtual array aperture that is
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twice the length of the physical array and as a result enhance DOA estimation accuracy.
Finally, the numerical simulation results are provided to demonstrate the effectiveness and
superiority of the proposed method.

In order to avoid the high-complexity operation of eigenvalue decomposition (EVD)
in DOA estimation, deep learning network (DNN) has been applied to DOA estimation in
recent years. A DNN-based DOA and channel estimation schemes was proposed in [27],
which achieved better performance. In [28], the authors introduced a low-complexity
DNN-based method to a hybrid massive MIMO system with uniform circular array at the
base station, which had similar or even better performance compared to the traditional
ML method with lower complexity. An ESPRIT-based HAD method was proposed in [29],
which considered a machine learning framework to improve the estimation accuracy.

Aiming at rapidly estimating and tracking the main subspaces and major components
of a vector sequence in [30], a projection approximation and subspace tracking (PAST)
method was proposed. Furthermore, the proposed PAST method in [30] was improved
in [31]. It proved that the improved PAST method was better in both subspace estimation
and computational complexity. In [32], an improved power iteration (PI) method for
modal analysis was proposed. The simulation results showed that the method significantly
reduced the number of unnecessary iterations with a faster computational speed. An
iterative method was also proposed in [33] and good results were obtained.

Inspired by the idea of radar target detection, we considered a new SVD-based pas-
sive target detection model in [34], which achieved better detection performance. The
complexity of massive MIMO based on the covariance matrix decomposition method was
extremely high, for example, when the number of antennas is closed to 10,000 and the
computational complexity was tera (T) FLOPs. Therefore, how to significantly reduce the
computational complexity of direction finding for UAV emitters is an extremely challenging
problem, which is the key to its future applications. Therefore, in this paper, we propose a
rapid convergent power iteration (RPI) structure to achieve high performance with low
complexity. The main contributions in this paper are summarized as follows:

1. To significantly reduce the computational complexity of UAV direction finding, two
PI-based DOA estimation methods are respectively proposed, which are called RPI-
RI and RPI-PR. Here, the sampling covariance of the received signal vector is first
computed. An initial vector subjected to power iteration is determined, which replaces
the traditional EVD. Then the final DOA estimation is given by the corresponding
signal and noise subspaces. The simulation results show that RPI-RI and RPI-PR can
achieve better DOA accuracy and lower computational complexity than conventional
algorithms; in particular, the RPI-PR can dramatically reduce the complexity while
maintaining performance close to CRLB.

2. To reduce the number of unnecessary iterations and obtain a faster computation
speed, the optional initial vectors are selected which can converge to the desired
results. In each iteration, it must be ensured that the initial vector is not orthogonal to
the incident wave and it is better to keep them away from orthogonality. Through
computational analysis, we selected different initial vector values that satisfy the
conditions and analyzed the performance of iterative convergence. Moreover, the
computation result often has a great relationship with the relative error. When a good
initial vector and relative error are determined, results with fast convergence and
fewer iterations can be achieved.

The remainder of this paper is organized as follows. Section 2 provides an in-depth
discussion of related work. Section 3 describes the structure of the rapid power iterative
estimator for massive/ultra-massive MIMO receiver. In Section 4, two low-complexity
estimators are proposed and their performance is also analyzed. The simulation results are
presented in Section 5. Finally, we draw conclusions in Section 6.

Notations: Throughout the paper, x and X in bold typeface are used to represent
vectors and matrices, respectively, while scalars are presented in normal typeface, such
as x. Signs (·)H and | · | represent conjugate transpose and modulus, respectively. IN
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denotes the N × N identity matrix. Furthermore, E[·] represents the expectation operator
and x ∼ CN (m, R) denotes a circularly symmetric complex Gaussian stochastic vector
with mean vector m and covariance matrix R. x̂ represents the estimated value of x.

Definitions of terms: DOA (direction of arrival) is the process of finding the angle or
direction from which a signal is arriving at a receiver, with applications in various fields
such as radar, sonar, wireless communication and audio signal processing.

HAD (hybrid analog and digital) is a special array structure. Analog components are
used to process continuous signals, while digital components are used to process discrete
signals. In the receiver array, it can be simply divided into fully connected, sub-connected
and switch-based.

D-ML (dynamic maximum likelihood) is a generalized maximum likelihood algorithm
for the three HAD structures as well as for the fully digital structure.

Root-MUSIC-HDAPA is a low-complexity DOA estimator. It firstly applies the con-
ventional Root-MUSIC algorithm in the digital domain, followed by digital phase align-
ment. Finally, analog phase alignment is performed in the analog domain to eliminate
pseudo-solutions.

PAST (projection approximation subspace tracking) is a robust and low-complexity sig-
nal subspace tracking method that solves the problem by making an appropriate projection
approximation to the recursive least squares technique.

2. Related Work

There has been extensive related research conducted on adopting MIMO technology
and UAVs to enhance wireless sensor network connectivity and improve user data acqui-
sition. In [35], the authors utilized UAVs as relay networks and employed cooperative
MIMO techniques to facilitate information transmission in disconnected regions between
sparse WSNs, achieving low latency and high stability of communication. In [36], the
authors propose a novel data acquisition scheme by equipping the receiver node with
MIMO technology and making it well planned for mobility. The experimental results
demonstrate that this approach can significantly enhance system throughput and energy
efficiency. To determine the number of radiation nodes, the authors propose a UAV-based
comprehensive DOA preprocessing system in [37]. This system consists of two signal
detectors and a verifier that can make precise inferences based on the MIMO receiver array,
which provides the foundation for the following DOA estimation.

3. System Model

To rapidly achieve the direction finding of the UAV, Figure 1 sketches a low-complexity
massive MIMO RPI receiver structure for UAV direction estimation. In this structure, the
PI method is considered for application in a uniformly spaced linear array (ULA) with
N antennas and an appropriate N-dimensional initial array manifold is constructed as
the input vector for it, which can effectively reduce the number of iterations. Then, the
receive covariance matrix of all antennas is exploited as the object matrix to generate an
eigenvector V corresponding to the largest eigenvalue. Through constructing signal or
noise subspaces, the optimal DOA estimation can be derived in different methods such as
polynomial rooting [38] and rotational invariance [39].

In the proposed framework, it is assumed that the narrow band signals s(t)ej2π fct

transmitted via the UAV emitter will arrive at the array, where s(t) is the baseband signal
and fc is the carrier frequency. Then the antennas will capture the signal with different
time delays dependent on the DOAs. Therefore, the propagation delay of the nth antenna
element is expressed as

τn = τ0 − (dn/c)sinθ0, n = 1, 2, ..., N, (1)

where τ0 is the propagation delay from the UAV to a reference point on the receive array, θ0
is the direction of the UAV relative to the line perpendicular to the array. dn is the distance
from the nth array element to the reference point and c is the speed of light. Without loss of
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generality, we can assume that τ0 = 0. Thus, τn = −(dn/c)sinθ0. The receive signal vector
at the array can be expressed as

y(t) = a(θ0)s(t) + v(t), (2)

where v(t) ∼ CN (0, σ2
v IN) is the additive white Gaussian noise (AWGN) vector and a(θ0)

only composed by the phase difference of all antennas is called array manifold, defined as

a(θ0) = [ej2πd1sinθ0/λ, ej2πd2sinθ0/λ, · · · , ej2πdN sinθ0/λ]T , (3)

Figure 1. Proposed low-complexity RPI structure.

In practice, although the ideal covariance matrix cannot be obtained directly, its
estimated value is given by

Ry =
1
K

K

∑
n=1

y(n)yH(n), (4)

where K is the number of sampling points.
Make the eigenvalue decomposition of (4)

Ry = UΣUH = [US UN ]Σ[US UN ]
H . (5)
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where Σ is the diagonal matrix consisting of all non-zero eigenvalues of Ry and the matrices
US and UN stand for the signal and noise subspaces, respectively.

The CRLB is the minimum variance of DOA estimation errors. It can provide a
useful characterization of the achievable accuracy of the systems. According to [8], for an
N-element linear array the CRB can be given by

CRB =
λ2

8π2K SNR cos2θ d2
(6)

where

d2 =
N

∑
m=1

d2
m (7)

and SNR is the signal-to-noise ratio of the signal received at each antenna.

4. Proposed Two Rapid Power Iterative Estimators for Massive/Ultra-Massive
MIMO Receiver

The subspace-based methods are widely used for direction finding of UAV emit-
ters. However, their eigenvalue decomposition brings horrible complexity when the
antenna tends to large-scale. Therefore, two low-complexity estimators are proposed
in this section based on the RPI structure, the selection of the initial vector and the
computational complexity.

4.1. Proposed RPI-RI Estimator

It is assumed that there exist two subarrays both with N− 1 antennas and overlapping
with each other [39]. The first subarray consists of the first N − 1 antennas of all antennas
and the second subarray consists of the last N − 1 antennas of all antennas. Since the
structures of the two subarrays are identical, the outputs of the two subarrays have only
one phase difference φ.

The following assumes that the received data of the first subarray is x1 and the received
data of the second subarray is x2, and by combining two subarrays, the 2N− 2× 1 received
data can be expressed as

x(t) =
[

x1(t)
x2(t)

]
=

[
a1(θ0)

a1(θ0)Φ

]
s(t) + ṽ = a1(θ0) + ṽ, (8)

where ṽ(t) ∼ CN (0, σ2
ṽ IN) is the additive white Gaussian noise (AWGN) vector and a1(θ0)

is an N − 1 dimensional array manifold vector, which can be defined as

a1(θ0) =
[
1, ej 2π

λ d sin θ0 , · · · , ej 2π
λ (N−2)d sin θ0

]T
, (9)

and Φ = ejφ is a rotation-invariant value, which contains the direction of arrival information
of the incoming wave signal and φ = 2πd sin θ/λ.

The covariance matrix R can be given by

R =
1
K

K

∑
n=1

x(n)xH(n), (10)

Let us define M = 2N − 2 and assume that the covariance matrix R has M eigen-
values λ1, λ2, ..., λM with an associated collection of linearly independent eigenvectors
{u1, u2, ..., uM}. Moreover, it is assumed that R has precisely one eigenvalue λ1, which is
the largest in magnitude, i.e.,

|λ1| > |λ2| > |λ3| > · · · > |λM| ≥ 0, (11)
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There exists a random vector v0 ∈ Rn that satisfies

v0 =
M

∑
k=1

αkuk, (12)

where α1, α2, ..., αM (α1 6= 0) are scalars.
Taking the vector v0 as the initial vector of the RPI-RI method and multiplying both

sides of this equation by R, R2, ..., Rn, ... gives

v1 = Rv0 = R
M
∑

k=1
αkuk =

M
∑

k=1
αkRkuk =

M
∑

k=1
αkλkuk,

v2 = Rv1 = R2v0 = R2
M
∑

k=1
αkuk =

M
∑

k=1
αkλ2

kuk,

· · ·

vn = Rvn−1 = Rnv0 = Rn
M
∑

k=1
αkuk =

M
∑

k=1
αkλn

k uk.

(13)

vn can be rewritten as

vn = λn
1 (α1u1 +

M

∑
k=2

αk(
λk
λ1

)nuk)

= λn
1 (α1u1 + εn), (14)

where

εn =
M

∑
k=2

αk(
λk
λ1

)nuk, (15)

Since |λ1| > |λk| for all k = 2, 3, ..., M, the above function can be further expressed as

lim
n→∞

εn = lim
n→∞

M

∑
k=2

αk(
λk
λ1

)n = 0; (16)

therefore,

lim
n→∞

vn = lim
n→∞

λn
1 α1u1, (17)

The eigenvector corresponding to the main eigenvalue λ1 is

uλ1 = lim
n→∞

vn

λn
1
= lim

n→∞

λn
1 (α1u1 + εn)

λn
1

= α1u1, (18)

where λ1 is expressed by the limit of the ratio of the ith component of vector vn+1 to the ith
component of vector vn, which has the following form

lim
n→∞

(vn+1)i
(vn)i

= lim
n→∞

λn+1
1 (α1u1 + εn+1)i

λn
1 (α1u1 + εn)i

= lim
n→∞

λ1[α1(u1)i + (εn+1)i]

α1(u1)i + (εn)i
= λ1, (19)

The estimated value of λ1 is

λ̂1 =
(vn+1)i
(vn)i

. (20)
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In cases for which the power method generates a good approximation of a dominant
eigenvector vλ1 , the Rayleigh quotient [40] provides a correspondingly good approximation
of the dominant eigenvalue λ1

λ1 = R(R, vλ1) =
vλ1

TRvλ1

vλ1
Tvλ1

(21)

The key problem solved by the ESPRIT algorithm is the proper use of the translation-
invariant property of the linear array, so that the eigenvalues of the rotation-invariant
matrix can be found to estimate the signal incidence angle.

Based on (13) and (18), we perform the PI method on the covariance matrix R and
obtain the signal subspace uλ1 . Since the shift invariance of the array implies that uλ1 can
be decomposed as

uλ1 =

[
uλ11
uλ12

]
(22)

where the two parts uλ11 and uλ12 correspond to the signal subspaces of the subarrays X1(t)
and X2(t). In accordance with the ESPRIT algorithm [39], a matrix similar to Φ can be
expressed as

Ψ = (uλ11)
†uλ12 = (uH

λ11
uλ11)

−1uH
λ11

uλ12 , (23)

Therefore, the corresponding eigenvalues of Φ, i.e., the diagonal elements, can be
given by performing eigenvalue decomposition on Ψ and the final DOA estimation can be
calculated by

θ̂ = arcsin(
φλ

2πd
), (24)

where φ is the eigenvalues of Φ. The specific algorithm steps of the proposed RPI-RI
estimator are described in Algorithm 1 as follows

Algorithm 1 Proposed RPI-RI estimator
1: Input subarray 1 and subarray 2 to receive X1 and X2, forming the receive data model X
based on (8);
2: Calculate the covariance matrix R and use it as the object matrix of the power iteration to
obtain the signal subspace corresponding to the two subarrays and further find the matrix Ψ
similar to Φ;
3: The corresponding eigenvalues are given by EVD on Φ and the final DOA estimation θ̂ is
calculated based on (24).

4.2. Proposed RPI-PR Estimator

The RPI-RI estimator can significantly reduce the computational complexity by using
the power iteration and the rotational invariance of the signal subspace between sub-
arrays, but it is difficult to achieve the desired performance and the complexity can be
further optimized.

In order to further reduce the computational complexity and achieve better perfor-
mance, the RPI-PR estimator is proposed in this subsection. From (18), the signal sub-
space can be given by power iterating over Ry in (4). Furthermore, we construct the
noise subspace

UV = I− uλ1(u
H
λ1

uλ1)
−1uH

λ1
, (25)

where I is N × N unit matrix. The spatial spectral function can be defined as

S(θ) =
1

‖aH(θ)UV‖2 (26)
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The spectral peak corresponds to the desired DOA estimation. Furthermore, let us
define z = e2π/λdsinθ ; the polynomial equation can be expressed as

f (θ) = S−1(θ) = aH(θ)UVUH
V a(θ) (27)

= aT(
1
z
)UVUH

V a(z) , f (z)

The above polynomial Equation (27) has 2N − 2 roots, i.e, zi, i = 1, · · · , 2N − 2, which
implies the existence of multiple emitter directions as follows

Θ̂RM =
{

θ̂i, i ∈ {1, 2, · · · , 2N − 2}
}

, (28)

where

θ̂i = arcsin
(

λ arg zi
2πd

)
(29)

The angle corresponding to the root inside the unit circle and closest to it is chosen as
the final DOA estimation θ̂.

The basic steps of the proposed RPI-PR method can be summarized as in Algorithm 2.

Algorithm 2 Proposed RPI-PR method
1: Input array receive signal y(t);
2: Based on (4), calculate the covariance matrix Ry;
3: Based on (25), estimate the noise subspace UV and use it to construct the spatial spec-
trum S(θ)
4: Multiple roots are given by the polynomial method for the spatial spectral function; the
angle corresponding to the root inside the unit circle and closest to it is chosen as the final
DOA estimation θ̂.

4.3. Selecting Initial Vector and Relative Error

The initial vector v0 has a direct effect on the speed of convergence and determines the
number of iterations. A randomly generated vector is usually selected as the iterative initial
vector, but not all the optional initial vectors can converge to obtain the desired results.
Since orthogonality may cause the iterative process failures to converge, it is necessary to
ensure that the initial vector is not orthogonal to the incident wave in each iteration. From
(12) and (14), v0 is formed as

(v0)H =

N
∑

j=1
R.j

S(R)
(30)

where S(R) is the sum of all elements in matrix R,

S(R) =
N

∑
i=1

N

∑
j=1

Rij (31)

and
N

∑
j=1

R.j = 1H
N×1R (32)

Thus, we can calculate
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Rv0 = R

(
N
∑

j=1
R.j)

H

S(R)
= R(1H

N×1R)H/S(R)

= RRH1N×1 = 1N×1 (33)

Based on the above discussion, the element distribution of initial vector v0 in (30) is
consistent with the distribution of matrix R, while the distribution is uniform, which can
keep them far away from orthogonality and speed up the convergence of the iteration.

Therefore, let us define the array manifold as

a(θ0) = [1, e−j2π d
λ sinθ0 , · · · , e−j2π(N−1) d

λ sinθ0 ]T

= [1, e−jφ, e−j2φ, · · · , e−j(N−1)φ]T , (34)

where

φ = 2π
d
λ

sinθ0 (35)

and the initial vector v0 is assumed to be

v0 = [b0, b1, · · · , bN−1]
T , (36)

The orthogonality equation can be expressed as

a(θ0)
Tv0 = b0 + b1e−jφ + ... + bN−1e−j(N−1)φ (37)

In order to make the incident wave direction not orthogonal to the initial vector,
a(θ0)

Tv0 6= 0 is constant. In the following, eight special initial vectors are discussed and
their convergence performance is analyzed.

I. The initial vector is assumed to be

v0 = [1, 1, 1, · · · , 1]T . (38)

where all elements are 1. Based on (37), the corresponding orthogonality equation is
given by

a(θ0)
Tv0 = 1 + e−jφ + e−j2φ + ... + e−j(N−1)φ

=
1− (e−jφ)N

1− e−jφ (39)

where φ = 2π d
λ sinθ0 and it can be discussed in three cases.

(1) When 1− ejφ 6= 0 and 1− (e−jφ)N = 0, φ can be calculated as

φ = 2π
d
λ

sinθ0 =
2πZ

N
(40)

where Z is an integer. It can be seen from (40) that a(θ0)
Tv0 = 0 holds when θ0 = arcsin( λZ

Nd )

and Z
N is not an integer.
(2) When 1− ejφ = 0, φ is given by

φ = 2π
d
λ

sinθ0 = 2πZ (41)

Substituting φ = 2πZ into (39), a(θ0)
Tv0 6= 0 is verified to hold.

(3) When 1− ejφ 6= 0 and 1− (e−jφ)N 6= 0, it is clear that a(θ0)
Tv0 6= 0 holds. Through

the above discussion, initial vector I is not guaranteed non-orthogonal always true.
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II. The initial vector is assumed to be

v0 = [1,−1, 1,−1, · · · ]T . (42)

where the odd element is 1 and the even elements is −1. Depending on the value of N, two
cases can be discussed.

(1) N is even

a(θ0)
Tv0 = 1− e−jφ + e−j2φ + ...− e−j(N−1)φ

= (1 + e−j2φ + e−j4φ + ... + e−j(N−2)φ)

− (e−jφ + e−j3φ + ... + e−j(N−1)φ)

=
1− (e−j2φ)

N
2

1− e−j2φ
− e−jφ(1− (e−j2φ)

N
2 )

1− e−j2φ

=
(1− e−jφ)(1− (e−j2φ)

N
2 )

1− e−j2φ
(43)

From the above discussion, it is clear that a(θ0)
Tv0 = 0 holds when φ satisfies the

following form {
i. φ = 2πN, N is integer
ii. φ = 2πZ

N , Z
N is not integer.

(44)

If φ selects these cases, it may generate incorrect DOA estimation.
(2) N is odd

a(θ0)
Tv0 = 1− e−jφ + e−j2φ + ... + e−j(N−1)φ

= (1 + e−j2φ + e−j4φ + ... + e−j(N−1)φ)

− (e−jφ + e−j3φ + ... + e−j(N−2)φ)

=
1− (e−j2φ)

N+1
2

1− e−j2φ
− e−jφ(1− (e−j2φ)

N−1
2 )

1− e−j2φ

=
(1− e−jφ)(1 + e−jNφ)

1− e−j2φ
(45)

It can be seen that a(θ0)
Tv0 = 0 holds when φ satisfies the following conditions

φ =
(2n + 1)π

N
, (46)

where 2n+1
N is not an integer and orthogonality only can be avoided by selecting other φ.

III. The initial vector is assumed to be

v0 = [1, 1, 1, 1, · · · ,−1,−1, · · · ,−1]T . (47)

Assuming N is even. The first half of the elements of vector v0 are 1 and the rest are −1.

a(θ0)
Tv0 = 1 + e−jφ + ...− e−j(N−1)φ

= (1 + e−jφ + e−j2φ + ... + e−j( N
2 −1)φ)

− (e−j N
2 φ + ... + e−j(N−1)φ)

=
1− (e−jφ)

N
2

1− e−jφ − e−j N
2 φ(1− (e−jφ)

N
2 )

1− e−jφ

=
(1− e−j N

2 φ)(1− (e−jφ)
N
2 )

1− e−jφ (48)
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Therefore, a(θ0)
Tv0 = 0 holds when φ satisfies the following cases{

i. φ = 2πN, N is integer
ii. φ = 4πZ

N , 2Z
N is not integer.

(49)

The above value of φ will lead to orthogonality.
IV. Let us define v0 as the normalized DFT vector f with its elements given by [41]

v0 = f = [e−j 2π
N /
√

N , e−j 2π
N 2/

√
N , · · · , e−j 2π

N N/
√

N ]T

= [e−jA, e−j2A, · · · , e−jNA]T . (50)

where

A =
2π

N
/
√

N (51)

Therefore, (37) can be calculated as

a(θ0)
Tv0 = e−jA + e−j2Ae−jφ + ... + e−jNAe−j(N−1)φ

= e−jA + e−j(2A+φ) + ... + e−j(NA+(N−1)φ)

=
e−jA(1− (e−jAe−jφ)N)

1− (e−jAe−jφ)
(52)

Solving the above equation yields

φ =
2πZ

N
− A = 2π

d
λ

sinθ0

sinθ0 =
λ(Z
√

N − 1)
N
√

Nd
. (53)

From the above discussion, when sinθ0 = λ(Z
√

N−1)
N
√

Nd
, where Z

N is not an integer, we

have a(θ0)
Tv0 = 0; the orthogonality may lead to estimation failure.

V. The initial vector is assumed to be

v0 = [· · · , 1, 0, 0, 0, · · · , 1, · · · ]T , m, n = 1, · · · , N. (54)

where the m-th element is 1, the n-th is 1 and the rest of the elements are 0 (m < n).

a(θ0)
Tv0 = e−jmφ + e−jnφ = e−jmφ(1 + e−j(n−m)φ) (55)

When φ = (2Z+1)π
n−m , a(θ0)

Tv0 = 0.
VI. The initial vector is assumed to be

v0 = [· · · , 1, 0, · · · , 1, · · · , 1, · · · ]T , m, n, k = 1, · · · , N. (56)

where m, n, k-th is 1 and the rest of the elements are 0 (m < n < k).

a(θ0)
Tv0 = e−jmφ + e−jnφ + e−jkφ

= e−jmφ(1 + e−j(n−m)φ(1 + e−j(k−n)φ)) (57)

when φ = Zπ
n−m or (2Z+1)π

k−n , a(θ0)
Tv0 = 0.

VII. The initial vector is assumed to be

v0 = [· · · , 1, 0, · · · , 1, · · · , 1, · · · , 1, · · · ]T , (58)

m, n, k, l = 1, · · · , N.
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where m, n, k, l-th is 1 and the rest of the elements are 0 (m < n < k < l).

a(θ0)
Tv0 = e−jmφ + e−jnφ + e−jkφ + e−jlφ

= e−jmφ.

(1 + e−j(n−m)φ(1 + e−j(k−n)φ(1 + e−j(l−k)φ))) (59)

when φ = Zπ
n−m or Zπ

k−n or (2Z+1)π
l−k , a(θ0)

Tv0 = 0.
So we can obtain the general rule, when b1, b2, b3, . . . , bn is 1 and the rest of the

elements are 0 (b1 < b2 < . . . < bn), when φ = Zπ
b2−b1

or Zπ
b3−b2

or . . . Zπ
bn−1−bn−2

or
(2Z+1)π
bn−bn−1

, a(θ0)
Tv0 = 0.

VIII. The initial vector is assumed to be

v0 = ek = [· · · , 0, 0, · · · , 1, · · · ]T , k = 0, · · · , N − 1. (60)

where the k-th element of ek is 1 and the rest of the elements are 0. a(θ0)
Tv0 6= 0 is

always true.
Among the above eight vector forms, the eighth vector form can be used as the initial

vector of the power iteration due to its non-orthogonality, while the previous seven cannot
guarantee the convergence of the power iteration.

In addition, the relative error ε also influences the speed of convergence in the conver-
gence process of power iteration, which can be expressed as

ε =
|εn|
|α1u1|

=

|
N
∑

k=2
αk(

λk
λ1
)nuk|

|α1u1|
(61)

and

|
N

∑
k=2

αk(
λk
λ1

)n| ≤ |
N

∑
k=2

α2(
λ2

λ1
)n| (62)

Therefore, (61) can be further expressed as

ε ≤ (N − 1)(
|λ2|
|λ1|

)n α2

α1
,

log2 ε ≤ log2(N − 1) + n log2 (
|λ2|
|λ1|

)− log2
α1

α2
(63)

From α1 ≥ α2,

log2 ε ≤ log2(N − 1) + n log2 (
|λ2|
|λ1|

) (64)

Since |λ1| > |λ2|,

n ≤
log2 ε− log2(N − 1)

log2 (
|λ2|
|λ1|

)
(65)

When the iteration approaches the final convergence, the convergence speed will be
relatively slow and stable. In practice, the usefulness of the power method depends upon
the ratio |λ2|

|λ1|
, since it dictates the rate of convergence.

The whole procedure is summarized in Algorithm 3.
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Algorithm 3 PI method on subspace

Input: matrix R, tolerence ε
Output: λ1, vn and n
Initialization: choose an initial vector v0, and n = 1.
repeat

1. Calculate vn = Rvn−1;
2. Calculate vn = vn/ max(vn);
3. Calculate λn = [vn]TRvn;
4. Update λ1 = λn;
5. n = n + 1.

until
‖max(vn)−max(vn−1)‖ ≤ ε.

Return λ1, vn and n

n is the number of iterations, λ1 is the dominant eigenvalue and vn is the dominant
eigenvector corresponding to λ1.

Notice that in each iteration we compute a single matrix–vector multiplication (O(N2)).
We never perform matrix–matrix multiplication, which requires a greater number of op-
erations (O(N3)). If the matrix R is sparse (only a small portion of the entries of A are
non-zero), matrix–vector multiplication can be performed very efficiently. Therefore, the
power method is practical even if N is very large, such as in Google’s Page Rank algorithm.

4.4. Complexity Analysis

We analyze the computational complexities of the proposed two estimators with
traditional ESPRIT and Root-MUSIC algorithms as a complexity benchmark. Thus, the
complexity of ESPRIT is as follows

CESPRIT = O{(2N − 2)3 + 2N − 3} (66)

FLOPs. The complexity of Root-MUSIC is

CRoot−MUSIC = O{N3 + 8N2 + NK(2N + 3)− 11N + 4} (67)

FLOPs. The complexity of RPI-RI is

CRPI−RI = O{β(2N − 2)2 + 2N − 3} (68)

FLOPs. The complexity of RPI-PR is

CRPI−PR = O{(β + 8)N2 + NK(2N + 3)− 11N + 4} (69)

FLOPs, where β is the iteration number of the power iteration. Assuming N is far larger
than K, β, compared with the conventional FD estimator, the complexity of the proposed
two estimators is significantly reduced as the number of antennas tends to large-scale.

5. Simulation Results and Discussions

In this section, a simulation is presented to analyze the performance of the proposed
massive MIMO DOA estimators for UAV and two conventional algorithms are used as
a comparison. Furthermore, we consider the effect of SNR, the number of antennas and
the number of snapshots on the proposed methods in the digital ADC architecture. In
each simulation figure, the number of Monte Carlo simulations L is 1000. Without loss of
generality, we assume that UAV emitter located in θ0 = 50◦, the number of snapshots K
is 1000, the antenna distance d = λ/2 and the number of antenna elements N is 64 in the
massive MIMO system.
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Figure 2 plots the root mean square error (RMSE) curves using four different methods
versus SNR with CRLB as the performance benchmark. Observing Figure 2, it is clear that
the proposed RPI-RI method can achieve a similar performance to ESPRIT but with some
performance loss, while the proposed RPI-PR method can achieve the corresponding CRLB.
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Proposed RPI-PR

Digital CRLB

Figure 2. RMSE over the SNR with N = 64 and K = 1000.

Figures 3 and 4 present the RMSE of four different methods versus the number of
antennas N and snapshots K. Without loss of generality, we assume that N ∈ [16, 272]
and K ∈ [100, 3600]. From Figures 3 and 4, it can be seen that the DOA estimators on the
power iteration method achieve a performance close to the conventional algorithms for any
number of antennas and snapshot scenarios; in particular, RPI-PR can reach the FD CRLB.

Figure 5 plots curves of complexity analysis versus the number of antennas N with
K = 50, SNR = 0 dB. From this figure, it can be seen that the complexity of all methods
gradually increases as the total number of antennas increases. However, the computational
complexity of our proposed methods is two to three orders of magnitude lower when
N = 1024 compared to the conventional methods. In particular, the proposed RPI-PR
method can achieve a performance close to CRLB.

To explore the influence of the selection of the initial vector on the number of iter-
ations and the convergence speed, Figure 6 shows the relationship between the optimal
eigenvector value vn and the number of iterations n, given three different initial vectors v0.
When the initial vector v0 is infinitely close to the signal subspace, only two iterations are
needed to complete the convergence and the result is similar to that of the initial vector
selected in (30). In addition, when the v0 obeys a random vector distribution, the required
number of iterations n is increased, which requires an average of eight iterations to reach
the convergence of the max(vn).

In order to verify the convergence performance of the initial vector
v0 = ek = [· · · , 0, 0, · · · , 1, · · · ]T in (60), five incident wave directions θ0 = {30◦, 60◦, 90◦,
120◦, 150◦} are assumed in Figure 7 and the number of iterations of RPI methods is given
by numerical simulation when SNR = 0. As shown in Figure 7, the proposed RPI methods
require about five iterations to converge. The |vn| in the figure indicates the absolute value
of the vector at the nth iteration.
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Figure 3. RMSE over the N with SNR = 0 dB and K = 1000.
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Figure 6. Convergence over the number of iterations n with N = 64, K = 1000 and SNR = 0 dB.

To analyze the effect of SNR on the convergence speed of the proposed RPI methods,
Figure 8 plots the iteration error αn of the RPI methods versus the number of iterations,
where the iteration error αn represents the absolute value of the difference between the
result of the nth iteration C(θn) and the result of the (n − 1)th iteration C(θn−1), i.e.,
αn = |C(θn)− C(θn−1)|. As shown in Figure 8, it is assumed that the number of antennas
N = 1024 and the incident wave direction θ0 = 50o. The number of iterations is 7, 5 and 4
for SNRs of −30 dB, 0 dB and 30 dB, respectively. the number of iterations of the proposed
algorithm decreases sequentially as the SNR increases.
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Figure 7. Curves of the number of iterations for five different directions with N = 64 and SNR = 0 dB.
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Figure 8. Curves of the number of iterations with different SNRs.

6. Conclusions

To find the direction of UAV emitters rapidly and accurately, two low-complexity
DOA estimators based on large-scale MIMO arrays are proposed. By determining good
initial vector and relative errors, the proposed two algorithms can significantly reduce
the computational complexity compared to the conventional algorithms and achieve fast
convergence of the power iteration process. In particular, the RPI-PR method achieves
more than two orders of magnitude complexity reduction and maintains performance close
to CRLB. Adopting the proposed algorithms makes fast direction finding of UAV based
on massive MIMO receiver feasible for future practical applications. However, there are
still some issues that deserve to be explored in depth, for example, how to find an initial
iteration vector that is closer to the maximum eigenvector to make the iteration speed up
further. In addition, it is a challenging problem to obtain the signal subspace via the power
iteration method in the scenario of multiple radiation sources and these problems will be
the research directions we focus on in the future.
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