201 research outputs found

    Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting

    Get PDF
    Light focusing inside live tissue by digital optical phase conjugation (DOPC) has drawn increasing interest due to its potential biomedical applications in optogenetics, microsurgery, phototherapy, and deep-tissue imaging. However, fast physiological motions in a live animal, including blood flow and respiratory motions, produce undesired photon perturbation and thus inevitably deteriorate the performance of light focusing. Here, we develop a photon-frequency-shifting DOPC method to fight against fast physiological motions by switching the states of a guide star at a distinctive frequency. Therefore, the photons tagged by the guide star are well detected at the specific frequency, separating them from the photons perturbed by fast motions. Light focusing was demonstrated in both phantoms in vitro and mice in vivo with substantially improved focusing contrast. This work puts a new perspective on light focusing inside live tissue and promises wide biomedical applications

    Single-Shot Time-Reversed Optical Focusing into and through Scattering Media

    Get PDF
    Optical time reversal can focus light through or into scattering media, which raises a new possibility for conquering optical diffusion. Because optical time reversal must be completed within the correlation time of speckles, enhancing the speed of time-reversed optical focusing is important for practical applications. Although employing faster digital devices for time-reversal helps, more efficient methodologies are also desired. Here, we report a single-shot time-reversed optical focusing method to minimize the wavefront measurement time. In our approach, all information requisite for optical time reversal is extracted from a single-shot on-axis hologram, and hence, no other preconditions or measurements are required. In particular, we demonstrate the first realization of single-shot time-reversed ultrasonically encoded (TRUE) optical focusing into scattering media. By using the minimum amount of measurement, this work breaks the fundamental speed limit of digitally based time reversal for focusing into and through scattering media and constitutes an important step toward high-speed wavefront shaping applications

    Single-Shot Time-Reversed Optical Focusing into and through Scattering Media

    Get PDF
    Optical time reversal can focus light through or into scattering media, which raises a new possibility for conquering optical diffusion. Because optical time reversal must be completed within the correlation time of speckles, enhancing the speed of time-reversed optical focusing is important for practical applications. Although employing faster digital devices for time-reversal helps, more efficient methodologies are also desired. Here, we report a single-shot time-reversed optical focusing method to minimize the wavefront measurement time. In our approach, all information requisite for optical time reversal is extracted from a single-shot on-axis hologram, and hence, no other preconditions or measurements are required. In particular, we demonstrate the first realization of single-shot time-reversed ultrasonically encoded (TRUE) optical focusing into scattering media. By using the minimum amount of measurement, this work breaks the fundamental speed limit of digitally based time reversal for focusing into and through scattering media and constitutes an important step toward high-speed wavefront shaping applications

    Dual-polarization analog optical phase conjugation for focusing light through scattering media

    Get PDF
    Focusing light through or inside scattering media by the analog optical phase conjugation (AOPC) technique based on photorefractive crystals (PRCs) has been intensively investigated due to its high controlled degrees of freedom and short response time. However, the existing AOPC systems only phase-conjugate the scattered light in one polarization direction, while the polarization state of light scattered through a thick scattering medium is spatially random in general, which means that half of the scattering information is lost. Here, we propose dual-polarization AOPC for focusing light through scattering media to improve the efficiency and fidelity in the phase conjugation. The motivations of the dual-polarization AOPC are illustrated by theoretical analysis and numerical simulation, and then an experimental system is established to realize the dual-polarization AOPC. By separating and rotating the two orthogonal polarization components of the randomly polarized scattered light, light in all polarization states is recorded and phase-conjugated using the same PRC. Experimental results for focusing through a thick biological tissue show that the intensity of the time-reversed focus from the dual-polarization AOPC can be enhanced by a factor of approximate four compared with the existing single-polarization AOPC

    Universal Sleep Decoder: Aligning awake and sleep neural representation across subjects

    Full text link
    Decoding memory content from brain activity during sleep has long been a goal in neuroscience. While spontaneous reactivation of memories during sleep in rodents is known to support memory consolidation and offline learning, capturing memory replay in humans is challenging due to the absence of well-annotated sleep datasets and the substantial differences in neural patterns between wakefulness and sleep. To address these challenges, we designed a novel cognitive neuroscience experiment and collected a comprehensive, well-annotated electroencephalography (EEG) dataset from 52 subjects during both wakefulness and sleep. Leveraging this benchmark dataset, we developed the Universal Sleep Decoder (USD) to align neural representations between wakefulness and sleep across subjects. Our model achieves up to 16.6% top-1 zero-shot accuracy on unseen subjects, comparable to decoding performances using individual sleep data. Furthermore, fine-tuning USD on test subjects enhances decoding accuracy to 25.9% top-1 accuracy, a substantial improvement over the baseline chance of 6.7%. Model comparison and ablation analyses reveal that our design choices, including the use of (i) an additional contrastive objective to integrate awake and sleep neural signals and (ii) the pretrain-finetune paradigm to incorporate different subjects, significantly contribute to these performances. Collectively, our findings and methodologies represent a significant advancement in the field of sleep decoding

    Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting

    Get PDF
    Light focusing inside live tissue by digital optical phase conjugation (DOPC) has drawn increasing interest due to its potential biomedical applications in optogenetics, microsurgery, phototherapy, and deep-tissue imaging. However, fast physiological motions in a live animal, including blood flow and respiratory motions, produce undesired photon perturbation and thus inevitably deteriorate the performance of light focusing. Here, we develop a photon-frequency-shifting DOPC method to fight against fast physiological motions by switching the states of a guide star at a distinctive frequency. Therefore, the photons tagged by the guide star are well detected at the specific frequency, separating them from the photons perturbed by fast motions. Light focusing was demonstrated in both phantoms in vitro and mice in vivo with substantially improved focusing contrast. This work puts a new perspective on light focusing inside live tissue and promises wide biomedical applications

    Regulation and Modulation of Human DNA Polymerase δ Activity and Function

    Get PDF
    This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4)
    corecore