101 research outputs found

    An electro-pneumatic force tracking system using fuzzy logic based volume flow control

    Get PDF
    In this paper, a fuzzy logic based volume flow control method is proposed to precisely control the force of a pneumatic actuator in an electro-pneumatic system including four on-off valves. The volume flow feature, which is the relationship between the duty cycle of the pulse width modulation (PWM) period, pressure difference, and volume flow of an on-off valve, is based on the experimental data measured by a high-precision volume flow meter. Through experimental data analysis, the maximum and minimum duty cycles are acquired. A new volume flow control method is introduced for the pneumatic system. In this method, the raw measured data are innovatively processed by a segmented, polynomial fitting method, and a newly designed procedure for calculating the duty cycle is adopted. This procedure makes it possible to combine the original data with fuzzy logic control (FLC). Additionally, the method allows us to accurately control the minimum and maximum opening pulse width of the valve. Several experiments are performed based on the experimental data, instead of the traditional theoretical models. Only 0.141 N (1.41%) overshoot and 0.03 N (0.03%) steady-state error are observed in the step response experiment, and 0.123 N average error is found while tracking the sine wave reference

    Numerical analysis of electro-convection in dielectric liquids with residual conductivity

    Get PDF
    Injection-induced electro-convection (EC) of dielectric liquids is a fundamental problem in electrohydrodynamics. However, most previous studies with this type of EC assume that the liquid is perfectly insulating. By perfectly insulating, we mean an ideal liquid with zero conductivity, and in this situation, the free charges in the bulk liquid originate entirely from the injection of ions. In this study, we perform a numerical analysis with the EC of dielectric liquids with a certain residual conductivity based on a dissociation–injection model. The spatiotemporal distributions of the flow field, electric field, and positive/negative charge density in the parallel plate configuration are solved utilizing the finite volume method. It is found that the residual conductivity inhibits the onset of EC flow, as well as the strength of the flow field. The flow features and bifurcations are studied in various scenarios with three different injection strengths in the strong, medium, and weak regimes. Three distinct bifurcation sequences with abundant features are observed by continually increasing or decreasing the electric Reynolds number. The present study shows that the residual conductivity significantly affects the bifurcation process and the corresponding critical point of EC flows.Ministerio de Ciencia, Innovación y Universidades PGC2018-099217-B-I0

    Molecular characterization, structural analysis and determination of host range of a novel bacteriophage LSB-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteriophages (phages) are widespread in the environment and play a crucial role in the evolution of their bacterial hosts and the emergence of new pathogens.</p> <p>Results</p> <p>LSB-1, a reference coliphage strain, was classified as a member of the Podoviridae family with a cystic form (50 ± 5 nm diameter) and short tail (60 ± 5 nm long). The double stranded DNA was about 30 kilobase pairs in length. We identified its host range and determined the gp17 sequences and protein structure using shotgun analysis and bioinformatics technology.</p> <p>Conclusions</p> <p>Coliphage LSB-1 possesses a tailspike protein with endosialidase activity which is probably responsible for its specific enteroinvasive <it>E.coli </it>host range within the laboratory.</p

    Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range

    Get PDF
    Ferroelectric/antiferroelectric thin/thick films with large electrocaloric (EC) effect in a broad operational temperature range are very attractive in solid-state cooling devices. We demonstrated that a large positive electrocaloric (EC) effect (maximum ΔT ~ 20.7 K) in a broad temperature range (~ 110 K) was realized in Pb0.97La0.02(Zr0.65Sn0.3Ti0.05)O3 (PLZST) relaxor antiferroelectric (AFE) thin film prepared using a sol-gel method. The large positive EC effect may be ascribed to the in-plane residual thermal tensile stress during the layer-by-layer annealing process, and the high-quality film structure owing to the utilization of the LaNiO3/Pt composite bottom electrode. The broad EC temperature range may be ascribed to the great dielectric relaxor dispersion around the dielectric peak because of the coexistence of nanoscale multiple FE and AFE phases. Moreover, a large pyroelectric energy density (6.10 Jcm−3) was harvested by using an Olsen cycle, which is much larger than those (usually less than 10− Jcm−3) obtained by using direct thermal-electrical, Stirling and Carnot cycles, etc. These breakthroughs enable the PLZST thin film an attractive multifunctional material for applications in modern solid-state cooling and energy harvesting

    New insights from GWAS for the cleft palate among han Chinese population

    Get PDF
    Genome wide association studies (GWAS) already have identified tens of susceptible loci for nonsyndromic cleft lip with or without cleft palate (NSCL/P). However, whether these loci associated with nonsyndromic cleft palate only (NSCPO) remains unknown. In this study, we replicated 38 SNPs (Single nucleotide polymorphisms) which has the most significant p values in published GWASs, genotyping by using SNPscan among 144 NSCPO trios from Western Han Chinese. We performed the transmission disequilibrium test (TDT) on individual SNPs and gene-gene (GxG) interaction analyses on the family data; Parent-of-Origin effects were assessed by separately considering transmissions from heterozygous fathers versus heterozygous mothers to affected offspring. Allelic TDT results showed that T allele at rs742071 (PAX7) (p=0.025, ORtransmission=3.00, 95%CI: 1.09-8.25) and G allele at rs2485893 (10kb 3? of SYT14) were associated with NSCPO (p=0.0036, ORtransmission= 0.60, 95%CI: 0.42-0.85). Genotypic TDT based on 3 pseudo controls further confirmed that rs742071 (p-value=0.03, ORtransmission=3.00, 95%CI: 1.09-8.25) and rs2485893 were associated with NSCPO under additive model (p-value= 0.02, ORtransmission= 0.66, 95%CI: 0.47-0.92). Genotypic TDT for epistatic interactions showed that rs4844913 (37kb 3? of DIEXF) interacted with rs11119388 (SYT14) (p-value=1.80E-08) and rs6072081 (53kb 3? of MAFB) interacted with rs6102085 (33kb 3? of MAFB) (p-value=3.60E-04) for NSCPO, suggesting they may act in the same pathway in the etiology of NSCPO. In this study, we found that rs742071 and rs2485893 were associated NSCPO from Han Chinese population; also, interactions of rs4844913:rs11119388 and rs6072081:rs6102085 for NSCPO were identified, gene-gene interactions have been proposed as a potential source of the remaining heritability, these findings provided new insights of the previous GWAS

    TLR3 Ligand PolyI:C Prevents Acute Pancreatitis Through the Interferon-β/Interferon-α/β Receptor Signaling Pathway in a Caerulein-Induced Pancreatitis Mouse Model

    Get PDF
    Acute pancreatitis (AP) is a common and devastating inflammatory disorder of the pancreas. However, there are still no effective treatments available for the disease. Therefore, it is important to discover new therapeutic targets and strategies for better treatment and prognosis of AP patients. Toll-like receptor 3 (TLR3) ligand polyI:C is a double-stranded RNA mimic that can be used as an immune stimulant. Our current study indicates that polyI:C exerted excellent anti-inflammatory effects in a caerulein-induced AP mouse model and taurocholate-induced pancreatic acinar cell line injury model. We found that polyI:C triggers type I interferon (IFN) production and downstream IFN-α/β receptor (IFNAR)-dependent signaling, which play key roles in protecting the pancreas from inflammatory injury. Knockout of IFN-β and IFNAR in mice abolished the preventive effects of polyI:C on caerulein-induced AP symptoms, which include pancreatic edema, neutrophil infiltration, the accumulation of reactive oxygen species (ROS), and inflammatory gene expression. Treating pancreatic acinar 266-6 cells with an IFNAR inhibitor, which blocks the interaction between type I IFN and IFNAR, diminishes the downregulation of oxidative stress by polyI:C. Additionally, a subsequent transcriptome analysis on the role of polyI:C in treating pancreatitis suggested that chemotaxis of neutrophils and the production of ROS were inhibited by polyI:C in the pancreases damaged by caerulein injection. Thus, polyI:C may act as a type I IFN inducer to alleviate AP, and it has the potential to be a promising therapeutic agent used at the early stages of AP
    corecore