36 research outputs found

    A vector spectrum analyzer of 55.1 THz spectral bandwidth and 99 kHz frequency resolution

    Full text link
    The analysis of optical spectra - emission or absorption - has been arguably the most powerful approach for discovering and understanding matters. The invention and development of many kinds of spectrometers have equipped us with versatile yet ultra-sensitive diagnostic tools for trace gas detection, isotope analysis, and resolving hyperfine structures of atoms and molecules. With proliferating data and information, urgent and demanding requirements have been placed today on spectrum analysis with ever-increasing spectral bandwidth and frequency resolution. These requirements are especially stringent for broadband laser sources that carry massive information, and for dispersive devices used in information processing systems. In addition, spectrum analyzers are expected to probe the device's phase response where extra information is encoded. Here we demonstrate a novel vector spectrum analyzer (VSA) that is capable to characterize passive devices and active laser sources in one setup. Such a dual-mode VSA can measure loss, phase response and dispersion property of passive devices. It also can coherently map a broadband laser spectrum into the RF domain. The VSA features a bandwidth of 55.1 THz (1260 to 1640 nm), frequency resolution of 99 kHz, and dynamic range of 56 dB. Meanwhile, our fiber-based VSA is compact and robust. It requires neither high-speed modulators and photodetectors, nor any active feedback control. Finally, we successfully employ our VSA for applications including characterization of integrated dispersive waveguides, mapping frequency comb spectra, and coherent light detection and ranging (LiDAR). Our VSA presents an innovative approach for device analysis and laser spectroscopy, and can play a critical role in future photonic systems and applications for sensing, communication, imaging, and quantum information processing

    Topology hierarchy of transition metal dichalcogenides built from quantum spin Hall layers

    Full text link
    The evolution of the physical properties of two-dimensional material from monolayer limit to the bulk reveals unique consequences from dimension confinement and provides a distinct tuning knob for applications. Monolayer 1T'-phase transition metal dichalcogenides (1T'-TMDs) with ubiquitous quantum spin Hall (QSH) states are ideal two-dimensional building blocks of various three-dimensional topological phases. However, the stacking geometry was previously limited to the bulk 1T'-WTe2 type. Here, we introduce the novel 2M-TMDs consisting of translationally stacked 1T'-monolayers as promising material platforms with tunable inverted bandgaps and interlayer coupling. By performing advanced polarization-dependent angle-resolved photoemission spectroscopy as well as first-principles calculations on the electronic structure of 2M-TMDs, we revealed a topology hierarchy: 2M-WSe2, MoS2, and MoSe2 are weak topological insulators (WTIs), whereas 2M-WS2 is a strong topological insulator (STI). Further demonstration of topological phase transitions by tunning interlayer distance indicates that band inversion amplitude and interlayer coupling jointly determine different topological states in 2M-TMDs. We propose that 2M-TMDs are parent compounds of various exotic phases including topological superconductors and promise great application potentials in quantum electronics due to their flexibility in patterning with two-dimensional materials

    Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

    Get PDF
    Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs

    De-escalating chemotherapy for stage I–II gastric neuroendocrine carcinoma? A real-world competing risk analysis

    No full text
    Abstract Background The role of adjuvant chemotherapy in gastric neuroendocrine neoplasms (GNEC) has not been well clarified yet. The study was designed to investigate the potential effect of adjuvant chemotherapy in stage I–II GNEC patients and construct a predictive nomogram. Method Stage I–II GNEC patients were included in the Surveillance, Epidemiology, and End Results (SEER) database and divided into chemotherapy and no-chemotherapy groups. We used Kaplan–Meier survival analyses, propensity score matching (PSM), and competing risk analyses. The predictive nomogram was then built and validated. Results Four hundred four patients with stage I–II GNEC were enrolled from the SEER database while 28 patients from Hangzhou TCM Hospital were identified as the external validation cohort. After PSM, similar 5-year cancer-specific survival was observed in two groups. The outcomes of competing risk analysis indicated a similar 5-year cumulative incidence of cancer-specific death (CSD) between the two cohorts (35.4% vs. 31.4%, p = 0.731). And there was no significant relation between chemotherapy and CSD in the multivariate competing risks regression analysis (HR, 0.79; 95% CI, 0.48–1.31; p = 0.36). Furthermore, based on the variables from the multivariate analysis, a competing event nomogram was created to assess the 1-, 3-, and 5-year risks of CSD. The 1-, 3-, and 5-year area under the receiver operating characteristic curve (AUC) values were 0.770, 0.759, and 0.671 in the training cohort, 0.809, 0.782, and 0.735 in the internal validation cohort, 0.786, 0.856, and 0.770 in the external validation cohort. Furthermore, calibration curves revealed that the expected and actual probabilities of CSD were relatively consistent. Conclusion Stage I–II GNEC patients could not benefit from adjuvant chemotherapy after surgery. De-escalation of chemotherapy should be considered for stage I–II GNEC patients. The proposed nomogram exhibited excellent prediction ability

    Chemogenetic and optogenetic stimulation of zona incerta GABAergic neurons ameliorates motor impairment in Parkinson’s disease

    No full text
    Summary: Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra and leads to progressive motor dysfunction. While studies have focused on the basal ganglia network, recent evidence suggests neuronal systems outside the basal ganglia are also related to PD pathogenesis. The zona incerta (ZI) is a predominantly inhibitory subthalamic region for global behavioral modulation. This study investigates the role of GABAergic neurons in the ZI in a mouse model of 6-hydroxydopamine (6-OHDA)-induced PD. First, we found a decrease in GABA-positive neurons in the ZI, and then the mice used chemogenetic/optogenetic stimulation to activate or inhibit GABAergic neurons. The motor performance of PD mice was significantly improved by chemogenetic/optogenetic activation of GABAergic neurons, and repeated chemogenetic activation of ZI GABAergic neurons increased the dopamine content in the striatum. Our work identifies the role of ZI GABAergic neurons in regulating motor behaviors in 6-OHDA-lesioned PD model mice
    corecore