11 research outputs found

    pH-Controllable Water Permeation through a Nanostructured Copper Mesh Film

    No full text
    Water permeation is an important issue in both fundamental research and industrial applications. In this work, we report a novel strategy to realize the controllable water permeation on the mixed thiol (containing both alkyl and carboxylic acid groups) modified nanostructured copper mesh films. For acidic and neutral water, the film is superhydrophobic, and the water cannot permeate the film because of the large negative capillary effect resulting from the nanostructures. For basic water, the film shows superhydrophilic property, and thus the water can permeate the film easily. The permeation process of water can be controlled just by simply altering the water pH. A detailed investigation indicates that nanostructures on the substrate and the appropriate size of the microscale mesh pores can enhance not only the static wettability but also the dynamic properties. The excellent controllability of water permeation is ascribed to the combined effect of the chemical variation of the carboxylic acid group and the microstructures on the substrate. This work may provide interesting insight into the new applications that are relevant to the surface wettability, such as filtration, microfluidic device, and some separation systems

    Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Microdroplets on Highly Hydrophobic Silicon Surface

    No full text
    In this work, we report a magnetic technique for reversible wetting–dewetting transitions of microdroplets on highly hydrophobic surfaces. A superparamagnetic microdroplet can be reversibly switched between the Cassie state and the Wenzel state on a highly hydrophobic microstructured silicon substrate by the application of the magnetic field. The transition can be controlled by both the intensity of the magnetic field and the concentration of the superparamagnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles in the microdroplet. The magnetic force needed during the transition from the Cassie state to the Wenzel state was found to be apparently smaller than that needed in the reverse process. Such asymmetry is ascribed to the higher energy of the Cassie state compared with the Wenzel state, the change of the gravitational potential energy, and the adhesion hysteresis. This report provides a novel method of dynamically controlling liquid/solid interactions, which can not only help us to understand further the transition between the Cassie state and the Wenzel state but also potentially be used in some important applications, such as lab-on-a-chip devices and chemical microreactors

    High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors

    No full text
    The volumetric performance is a vitally important metric for portable electronic and wearable devices with limited space. However, it is contradictory for the most supercapacitors in the connection between the volumetric and gravimetric capacitances. Herein, we report a simple strategy to prepare a free-standing and binder-free holey graphene/PPy film that possesses a dense microstructure but still high gravimetric capacitances. The holey graphene/PPy film own high-efficiency ion transport channels and big ion-accessible surface area to achieve high-powered supercapacitor electrodes, which have a superior volumetric capacitance (416 F cm<sup>–3</sup>) and high gravimetric capacitance (438 F g<sup>–1</sup>) at 1.0 A g<sup>–1</sup> in 6 M KOH electrolyte. Meanwhile, it possesses high rate capability and good cycling performance (82.4% capacitance retention even after 2000 cycles). Furthermore, the volumetric energy density of assembled holey graphene/PPy film symmetric supercapacitor can show high as 22.3 Wh L<sup>–1</sup>. Such densely packed free-standing holey graphene/PPy film is a very significant electrode material for compact and miniaturized energy storage equipment in the further

    Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO<sub>2</sub> Nanotube Arrays

    No full text
    Recently, smart interfacial materials that can reversibly transit between the superhydrophobicity and superhydrophilicity have aroused much attention. However, all present performances happen in air, and to realize such a smart transition in complex environments, such as oil, is still a challenge. Herein, TiO<sub>2</sub> nanotube arrays with switchable transition between the superhydrophobicity and superhydrophilicity in oil are reported. The switching can be observed by alternation of UV irradiation and heating process, and the smart controllability can be ascribed to the cooperative effect between the surface nanostructures and the chemical composition variation. By using the controllable wetting performances, some applications such as under-oil droplet-based microreaction and water-removal from oil were demonstrated on our surface. This paper reports a surface with smart water wettability in oil, which could start some fresh ideas for wetting control on interfacial materials

    Under-Oil Switchable Superhydrophobicity to Superhydrophilicity Transition on TiO<sub>2</sub> Nanotube Arrays

    No full text
    Recently, smart interfacial materials that can reversibly transit between the superhydrophobicity and superhydrophilicity have aroused much attention. However, all present performances happen in air, and to realize such a smart transition in complex environments, such as oil, is still a challenge. Herein, TiO<sub>2</sub> nanotube arrays with switchable transition between the superhydrophobicity and superhydrophilicity in oil are reported. The switching can be observed by alternation of UV irradiation and heating process, and the smart controllability can be ascribed to the cooperative effect between the surface nanostructures and the chemical composition variation. By using the controllable wetting performances, some applications such as under-oil droplet-based microreaction and water-removal from oil were demonstrated on our surface. This paper reports a surface with smart water wettability in oil, which could start some fresh ideas for wetting control on interfacial materials

    Regulating Underwater Superoleophobicity to Superoleophilicity on Hierarchical Structured Copper Substrates through Assembling <i>n</i>‑Alkanoic Acids

    No full text
    In this paper, we report a simple method based on assembling <i>n</i>-alkanoic acids on hierarchical structured copper toward preparing surfaces with tunable oil wetting performance in water. Surface wettability from superoleophobicity to superoleophilicity in water can be regulated through tuning the chain length of <i>n</i>-alkanoic acids. Importantly, even in strongly acid and basic water, such phenomena can still be observed. The cooperation between the hierarchical structures and the surface chemical composition variation is responsible for the controllability. Meanwhile, the tunable ability is universal and the controllability is suitable for various oils including silicon oil, <i>n</i>-hexane, and chloroform. Moreover, the method was also used on copper mesh substrates, and we reported the related application of selective oil/water separation. This paper provides a flexible strategy toward preparing surfaces with tunable oil wetting performances, which can also be suitable for other materials, and offers some fresh ideas in manipulating underwater oil wetting performances on surfaces

    Underwater Superoleophilic to Superoleophobic Wetting Control on the Nanostructured Copper Substrates

    No full text
    Surfaces with controlled underwater oil wettability would offer great promise in the design and fabrication of novel materials for advanced applications. Herein, we propose a new approach based on self-assembly of mixed thiols (containing both HS­(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub> and HS­(CH<sub>2</sub>)<sub>11</sub>OH) on nanostructured copper substrates for the fabrication of surfaces with controlled underwater oil wettability. By simply changing the concentration of HS­(CH<sub>2</sub>)<sub>11</sub>OH in the solution, surfaces with controlled oil wettability from the underwater superoleophilicity to superoleophobicity can be achieved. The tunable effect can be due to the synergistic effect of the surface chemistry variation and the nanostructures on the surfaces. Noticeably, the amplified effect of the nanostructures can provide better control of the underwater oil wettability between the two extremes: superoleophilicity and superoleophobicity. Moreover, we also extended the strategy to the copper mesh substrates and realized the selective oil/water separation on the as-prepared copper mesh films. This report offers a flexible approach of fabricating surfaces with controlled oil wettability, which can be further applied to other ordinary materials, and open up new perspectives in manipulation of the surface oil wettability in water

    pH-Induced Reversible Wetting Transition between the Underwater Superoleophilicity and Superoleophobicity

    No full text
    Surfaces with controlled oil wettability in water have great potential for numerous underwater applications. In this work, we report a smart surface with pH-responsive oil wettability. The surface shows superoleophilicity in acidic water and superoleophobicity in basic water. Reversible transition between the two states can be achieved through alteration of the water pH. Such smart ability of the surface is due to the cooperation between the surface chemistry variation and hierarchical structures on the surface. Furthermore, we also extended this strategy to the copper mesh substrate and realized the selective oil/water separation on the as-prepared film. This paper reports a new surface with excellently controllable underwater oil wettability, and we believe such a surface has a lot of applications, for instance, microfluidic devices, bioadhesion, and antifouling materials

    pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film

    No full text
    Recently, materials with controlled oil/water separation ability became a new research focus. Herein, we report a novel copper mesh film, which is superhydrophobic and superhydrophilic for nonalkaline water and alkaline water, respectively. Meanwhile, the film shows superoleophobicity in alkaline water. Using the film as a separating membrane, the oil/water separating process can be triggered on-demand by changing the water pH, which shows a good controllability. Moreover, it is found that the nanostructure and the appropriate pore size of the substrate are important for realization of a good separation effect. This paper offers a new insight into the application of surfaces with switchable wettability, and the film reported here has such a special ability that allows it to be used in other applications, such as sewage purification, filtration, and microfluidic device

    Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling <i>n</i>‑Alkanoic Acids

    No full text
    Controlling liquid adhesion on special wetting surface is significant in many practical applications. In this paper, an easy self-assembled monolayer technique was advanced to modify nanostructured copper substrates, and tunable adhesive underwater superoleophobic surfaces were prepared. The surface adhesion can be regulated by simply varying the chain length of the <i>n</i>-alkanoic acids, and the tunable adhesive properties can be ascribed to the combined action of surfaces nanostructures and related variation in surface chemistry. Meanwhile, the tunable ability is universal, and the oil-adhesion controllability is suitable to various oils including silicon oil, <i>n</i>-hexane, and chloroform. Finally, on the basis of the special tunable adhesive properties, some applications of our surfaces including droplet storage, transfer, mixing, and so on are also discussed. The paper offers a novel and simple method to prepare underwater superoleophobic surfaces with regulated adhesion, which can potentially be applied in numerous fields, for instance, biodetection, microreactors, and microfluidic devices
    corecore