218 research outputs found
Expert Consensus on ECG Identification Applied in the Insurance Industry
Electrocardiograms (ECGs) have the potential to be used as a reliable source of information for human identity recognition due to their universality, portability, and unique and stable biological identification features. This method enriches and refines existing biometric identification techniques, and is suitable for customer identity identification in the insurance industry. This article has the following objectives: 1) to introduce biometric identification techniques commonly used in the insurance industry, including ECG biometric identification techniques, and their advantages; 2) to discuss major aspects of ECG biometric identification techniques; 3) to systematically review the most recent advances in ECG identification and extraction characteristics from research in China and other countries; 4) to outline the technical aspects of using ECGs for recognizing client identity in the insurance industry; and 5) to discuss the future of ECGs in identity recognition. This article is aimed at further promoting the application of living personal ECG identification techniques in the insurance industry, and extending it to areas including medical insurance, banking, justice, public security, military, government, enterprises, and other departments and areas in which identification is needed to promote social stability and national security
Investigation of the stability of the anti-islanding detection in multi-DGs system
U radu je predstavljen poboljšani model multi-DGs mikro rešetki za analizu stabilnosti sustava tijekom vezivanja s rešetkom. DGs u sustavu opremljeni su
Sandia frequency shift (SFS) shemom kao načinom anti-islanding zaštite. Uvođenjem dužine linije distribucijske mreže, pozitivnog porasta povratne sprege SFSa i distribuiranog dovoda energije, parametri izlazne snage za poboljšanje matematičkog modela mikro energetskih rešetki uspostavljeni su u tri vrste parametara i odnosu između margine stabilnosti mikro energetske rešetke za postizanje stabilnosti sustava praga dužine linije energetske mreže, i stabilnosti granične vrijednosti napona izlazne snage distribuirane istosmjerne struje. Taj postupak omogućuje projektantima i inženjerima obnovljivih energetskih sustava optimiziranje sustava i osiguranje stabilnosti. Konačno, uzimajući u obzir nekoliko potvrđivanja simulacija, u radu se daje poboljšani model koji može utjecati na aktualnu implementaciju analize distribuirane mikro energetske rešetke, te se tako može donijeti zaključak o stabilnosti kritičkog praga parametara sustava. Na temelju tih analiza slučaja, pokazalo se da je stabilnost sustava vrlo važna za stabilnost mikrorešetki mnogih distribuiranih multi-DGs, koji su korisni za projektiranje i implementaciju novih energetskih sustava.This paper presents an improved model of multi-DGs microgrids for analysing system stability during grid-connections. The DGs-in the system are equipped with the Sandia frequency shift (SFS) scheme as an anti-islanding protection technique. By introducing a distribution network line length, SFS positive feedback gain and distributed power supply, power output parameters to improve the micro power grid mathematical model are established in three kinds of parameters and the relationship between micro power grid stability margin, to obtain stability of the system of power line length threshold, and stability of the distributed power dc output voltage threshold. This process allows the designers and engineers of renewable energy systems to optimize the system and ensure stability. Finally, in view of the several common simulation validations, this paper puts forward an improved model that can affect actual implementation of distributed micro power grid analysis, whereby the stability of the system parameters’ critical threshold may be deduced. Based on these case studies, system stability is shown to be very important to the stability of many distributed multi-DGs microgrids, which are useful for the design and implementation of new energy systems
One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural Radiance Field
Talking head generation aims to generate faces that maintain the identity
information of the source image and imitate the motion of the driving image.
Most pioneering methods rely primarily on 2D representations and thus will
inevitably suffer from face distortion when large head rotations are
encountered. Recent works instead employ explicit 3D structural representations
or implicit neural rendering to improve performance under large pose changes.
Nevertheless, the fidelity of identity and expression is not so desirable,
especially for novel-view synthesis. In this paper, we propose HiDe-NeRF, which
achieves high-fidelity and free-view talking-head synthesis. Drawing on the
recently proposed Deformable Neural Radiance Fields, HiDe-NeRF represents the
3D dynamic scene into a canonical appearance field and an implicit deformation
field, where the former comprises the canonical source face and the latter
models the driving pose and expression. In particular, we improve fidelity from
two aspects: (i) to enhance identity expressiveness, we design a generalized
appearance module that leverages multi-scale volume features to preserve face
shape and details; (ii) to improve expression preciseness, we propose a
lightweight deformation module that explicitly decouples the pose and
expression to enable precise expression modeling. Extensive experiments
demonstrate that our proposed approach can generate better results than
previous works. Project page: https://www.waytron.net/hidenerf/Comment: Accepted by CVPR 202
Noval advance of histone modification in inflammatory skin diseases and related treatment methods
Inflammatory skin diseases are a group of diseases caused by the disruption of skin tissue due to immune system disorders. Histone modification plays a pivotal role in the pathogenesis and treatment of chronic inflammatory skin diseases, encompassing a wide range of conditions, including psoriasis, atopic dermatitis, lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata. Analyzing histone modification as a significant epigenetic regulatory approach holds great promise for advancing our understanding and managing these complex disorders. Additionally, therapeutic interventions targeting histone modifications have emerged as promising strategies for effectively managing inflammatory skin disorders. This comprehensive review provides an overview of the diverse types of histone modification. We discuss the intricate association between histone modification and prevalent chronic inflammatory skin diseases. We also review current and potential therapeutic approaches that revolve around modulating histone modifications. Finally, we investigated the prospects of research on histone modifications in the context of chronic inflammatory skin diseases, paving the way for innovative therapeutic interventions and improved patient outcomes
The increased functional connectivity between the locus coeruleus and supramarginal gyrus in insomnia disorder with acupuncture modulation
BackgroundInsomnia disorder (ID) seriously affects the quality of people’s daily life, and acupuncture is an effective therapy for it. As an essential component of the upward activation system, the locus coeruleus (LC) plays a crucial role in sleep–wake regulation, its aberrant functional connectivity (FC) is found to be involved in ID. The purpose of this study was to explore the modulation effect of acupuncture on the resting state FC of LC in ID patients.Methods60 ID patients were recruited and randomly assigned to real acupuncture (RA) or sham acupuncture (SA) treatment. Resting-state functional magnetic resonance imaging (fMRI) data were collected before and after the treatment. With LC as the region of interest, the FC method was adopted to examine acupuncture-related modulation of intrinsic connectivity in ID patients. The Pittsburgh Sleep Quality Index (PSQI), Hyperarousal Scale (HAS), and actigraphy were used to assess sleep quality and cortical hyperarousal states. Associations between clinical outcomes and FC features were calculated using Pearson’s correlation analysis.ResultsThe improvement in sleep quality and hyperarousal in the RA group was greater than that in the SA group. After treatment, the FC between the LC and left inferior frontal gyrus (IFG) decreased in the RA group. The FC between the LC and left insula and supramarginal gyrus (SMG) was higher in the RA group. The change of LC FC values with the SMG was negatively associated with the change in PSQI scores.ConclusionAcupuncture can modulate FC between the LC and IFG, insular gyrus, and SMG. This may imply the potential mechanism of acupuncture treatment for insomnia
The regulatory mechanisms of cerium oxide nanoparticles in oxidative stress and emerging applications in refractory wound care
Cerium oxide nanoparticles (CeNPs) have emerged as a potent therapeutic agent in the realm of wound healing, attributing their efficacy predominantly to their exceptional antioxidant properties. Mimicking the activity of endogenous antioxidant enzymes, CeNPs alleviate oxidative stress and curtail the generation of inflammatory mediators, thus expediting the wound healing process. Their application spans various disease models, showcasing therapeutic potential in treating inflammatory responses and infections, particularly in oxidative stress-induced chronic wounds such as diabetic ulcers, radiation-induced skin injuries, and psoriasis. Despite the promising advancements in laboratory studies, the clinical translation of CeNPs is challenged by several factors, including biocompatibility, toxicity, effective drug delivery, and the development of multifunctional compounds. Addressing these challenges necessitates advancements in CeNP synthesis and functionalization, novel nano delivery systems, and comprehensive bio effectiveness and safety evaluations. This paper reviews the progress of CeNPs in wound healing, highlighting their mechanisms, applications, challenges, and future perspectives in clinical therapeutics
Metabolism of Bis(4-fluorobenzyl)trisulfide and Its Formation of Hemoglobin Adduct in Rat Erythrocytes
ABSTRACT Bis(4-fluorobenzyl)trisulfide (BFBTS) is a promising new antitumor agent under investigation. It was metabolized rapidly in vivo in rat, but the metabolic fate and primary site of metabolism have not been clarified. In this study, we investigated the role of blood in the metabolism of BFBTS and compared the BFBTS metabolic potencies in whole blood, plasma, and red blood cells (RBCs) in vitro. Three major metabolites of BFBTS [bis(4-fluorobenzyl) disulfide, para-fluorobenzyl-mercaptan, and para-fluorobenzoic acid] were detected in RBCs and whole blood. Significant metabolism of BFBTS was observed in RBCs that were identified as the primary site of BFBTS metabolism. Thiols, including endogenous thiols and hemoglobin, were proven to be the critical factor in BFBTS metabolism. S-Fluorobenzylmercaptocysteine Hb (hemoglobin) adducts were characterized in vitro at BFBTS concentration of 250 mM and higher, whereas such Hb adducts were not detected in RBCs from Sprague-Dawley rats receiving a single intravenous injection of BFBTS at a high dose of 50 mg/kg. Liquid chromatography-tandem mass spectrometry results revealed that adduction induced by BFBTS was prone to take place at Cys125 of globin b chains. Otherwise, glutathionylation of Hb was also observed that may be attributed to the oxidative effect of BFBTS. In summary, BFBTS was unstable when it met with thiols, and RBCs were the main site of BFBTS metabolism. Hb adducts induced by BFBTS could be detected in vitro at high concentration but not in vivo even at high dose
Association between FGA gene polymorphisms and coronary artery lesion in Kawasaki disease
ObjectiveTo investigate the correlation between FGA gene polymorphisms and coronary artery lesion in Kawasaki disease.MethodsTwo hundred and thirty four children with Kawasaki disease (KD group), 200 healthy children (normal group) and 208 children with non-KD fever (fever group) were enrolled. General clinical indicators, the concentration of serum MMPs, TIMP-1, FG-α,fibrinogen level, molecular function (FMPV/ODmax) and FGA Thr312Ala polymorphism were detected individually by testing peripheral venous blood after fasting in the morning.ResultsThere was no significant difference in average age among the three groups, which were 3.03 ± 1.22 years, 3.17 ± 1.30 years, and 3.21 ± 1.31 years, respectively. Compared with those in the fever group, the levels of white blood cell count (WBC), platelet count (PLT), procalcitonin (PCT), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and fibrinogen (Fg) levels were significantly increased in the KD group. Red blood cell count (RBC) and hemoglobin (Hb) levels were significantly decreased (p < 0.05).The concentration of serum MMPs, TIMP-1, and FG-α in the KD and fever groups were significantly higher than those in the normal group (p < 0.05). The concentration of MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, and FG-α in the KD group were significantly higher than those in the fever group (p < 0.05).The KD group was divided into two subgroups,55 patients with combined CAL and 179 patients without combined CAL. The plasma fibrinogen concentration in the combined CAL group was significantly higher than that in the non-combined CAL and normal groups (p < 0.01). There was no statistically significant difference in FMPV/ODmax among the three groups (p > 0.05). Compared with normal group, the FGA GG, GA, and AA genotype and G, A allele frequency of the FGA gene polymorphism in the KD group showed no significant difference (p > 0.05). In the KD group, the most common type in children with CAL was GA, while the most common type in children without CAL was GG.ConclusionMMPs and FG-α were significantly upregulated in KD patients. The proportion of FGA genotype GA in children with CAL was significantly higher than that in children without CAL, suggesting that FGA gene polymorphisms affect coronary artery lesion in children with KD
Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum
Background Allium fistulosum L. has good nutritional value and is cultivated worldwide as an efficacious traditional medicinal plant. Its biological activities are attributable to its phytochemicals. Nitrogen is an essential nutrient for plant growth and development; however, the effect of nitrogen levels on the level of active components in this species is not well understood. Methods In this study, using urea fertilizer, we investigated the effects of different nitrogen levels (N0, N1, and N2 at 0, 130, and 260 kg/ha, respectively) on the phytochemical constituents , and antioxidant and anticancer properties of A. fistulosum. Results The results suggested that nitrogen fertilizers have a significant effect on the level of total phenols and flavonoids. The analysis of the antioxidant capacity revealed that the lowest IC50 values corresponded to plants treated with the highest nitrogen concentration. Anticancer activity was investigated against cancer cell lines (HeLa and HepG2), and the extracts of A. fistulosum treated with a high nitrogen level showed the highest antiproliferative effect. Collectively, our results suggest that nitrogen fertilizer application enhanced the quality of A. fistulosum, particularly its health benefits
- …