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In the rapidly developing insurance industry, China 
saw an addition of 55.4 billion insurance policies 
in 2022, representing a 13.3% year-on-year growth 
rate, with a payout and expenditure of RMB 1.5 tril-
lion Yuan [1]. Identity recognition of customers, a 

crucial cornerstone of transactions between insurance 
companies and customers, refers to the obligation of 
institutions to use reasonable methods to understand 
 customers and their transactional information, to pre-
vent insurance fraud, money laundering, and other 

EXPERT CONSENSUS

Abstract

Electrocardiograms (ECGs) have the potential to be used as a reliable source of information for human identity 
 recognition due to their universality, portability, and unique and stable biological identification features. This method 
enriches and refines existing biometric identification techniques, and is suitable for customer identity identification in 
the insurance industry. This article has the following objectives: 1) to introduce biometric identification techniques 
commonly used in the insurance industry, including ECG biometric identification techniques, and their advantages; 
2) to discuss major aspects of ECG biometric identification techniques; 3) to systematically review the most recent 
advances in ECG identification and extraction characteristics from research in China and other countries; 4) to outline 
the technical aspects of using ECGs for recognizing client identity in the insurance industry; and 5) to discuss the future 
of ECGs in identity recognition. This article is aimed at further promoting the application of living personal ECG iden-
tification techniques in the insurance industry, and extending it to areas including medical insurance, banking, justice, 
public security, military, government, enterprises, and other departments and areas in which identification is needed to 
promote social stability and national security.
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illegal activities. This process involves various busi-
ness aspects, such as  customer registration, policy 
underwriting, endorsements, and claims processing 
[2]. Currently, the insurance industry relies primarily 
on valid identification documents and biometric recog-
nition, such as facial, fingerprint, iris, and DNA tech-
nologies, for customer identity recognition. However, 
these methods have limited reliability, because they 
are relatively simple, and are vulnerable to imitation 
and forgery. In recent years, the number of insurance 
fraud cases involving the use of another person’s 
heart disease history has increased. These cases have 
resulted in substantial financial losses, thus undermin-
ing the fairness and authority of the law, and posing 
severe challenges to the  development of the insurance 
industry. Under current  circumstances, traditional 
customer identity verification methods and technolo-
gies no longer meet the customer identity recognition 
needs in the insurance industry. Therefore, the insur-
ance industry, both domestically and internationally, 
urgently requires effective rapid biometric identity 
recognition technologies for identifying living peo-
ple. The electrocardiogram (ECG), a surface record-
ing of the electrical activity of the heart, is universal, 
portable, and based on unique and stable  biometric 
features. Consequently, it has found cross-over appli-
cations in the field of information technology and has 
been used for biometric identity recognition of living 
people in the insurance industry.

ECG-based identity recognition technology has 
been applied in China’s domestic insurance indus-
try for nearly 20 years and has achieved notable 
results. In 2006, Professor Li Zhongjian and col-
leagues from the Institute of Electrocardiology at 
Zhengzhou University proposed the groundbreak-
ing hypothesis of ECG waveform uniqueness [3]. 
They subsequently extended this concept to medi-
cal insurance identification cards and applied for a 
national invention patent for ECG biometric iden-
tity recognition cards in the same year [4]. In 2009, 
the research achievement of using ECG examina-
tion technology for the recognition of living peo-
ple received the Third Prize of the Henan Province 
Scientific and Technological Progress Award [5]. 
In 2022, research applying ECGs to the identifica-
tion of insured personnel received the First Prize of 
the Henan Province Scientific and Technological 
Achievements Award [6]. The research team has 
published more than 30 related articles.

To further enrich and improve biometric recog-
nition technology and promote the application of 
ECG-based biometric identity recognition of liv-
ing people in the insurance industry, the Institute of 
Electrocardiology of Zhengzhou University and the 
Tianjin Institute of Cardiology have jointly organ-
ized relevant experts in the field to prepare the 
“Expert consensus on ECG identification applied in 
the insurance industry.”

Common Biometric Recognition 
Technologies

Biometric recognition technology is a technique that 
combines computer technology with optics, acous-
tics, and biometric sensors to collect, collate, com-
pare, and analyze an individual’s inherent physi-
ological or behavioral characteristics for personal 
identification [7]. Because of their universality, port-
ability, and basis on unique and stable biometric fea-
tures, various biometric recognition technologies, 
such as facial recognition [8], fingerprint  recognition 
[9], iris recognition [10], genetic recognition [11], 
hand shape recognition [12], voiceprint recognition 
[13], and gait recognition [14] systems have gradu-
ally been developed and applied in multiple fields.

Biometric recognition technologies are gener-
ally classified into three categories: lesser  biometric 
recognition technology, high biometric recogni-
tion technology, and esoteric biometric recognition 
technology. Lesser biometric recognition technolo-
gies include facial, palm, palmprint, signature, and 
voice recognition. Because of the ease at which 
these biometric features can be imitated or mim-
icked, their reliability of identification is relatively 
low; therefore, these methods are generally suitable 
for applications with lower security requirements. 
High biometric recognition technologies refer to the 
recognition of retinal, iris, and fingerprint features. 
These biometric features are relatively complex and 
difficult to imitate. Consequently, these methods 
are widely recognized for their high credibility and 
accuracy, and are commonly applied in scenarios 
with relatively high security requirements, such as 
government departments, military institutions, and 
banks. Esoteric biometric recognition technolo-
gies involve primarily vascular patterns, human 
body odors, and DNA recognition. These biometric 
features are highly complex and cannot be easily 
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imitated, and are generally considered to have abso-
lute credibility and accuracy. However, collecting 
vascular patterns and human body odor characteris-
tics is challenging, and current recognition technol-
ogies are immature. DNA recognition technology is 
relatively mature but has high costs. This method is 
used primarily in criminal investigations and pater-
nity testing. Each biometric recognition technology 
has its own limitations. For example, retinal recog-
nition has a high misrecognition rate among people 
with eye diseases; iris recognition is less suitable 
for people with darker irises or eye diseases; and 
fingerprint recognition may encounter fingerprint 
blurring difficulties due to finger injuries or scars. 
Additionally, fingerprints can be easily replicated 
with latex, thus resulting in low forgery costs.

Each biometric recognition technology also has 
unique characteristics and performs well in dif-
ferent situations. By combining multiple comple-
mentary biometric recognition technologies, the 
reliability can be further improved, thus broaden-
ing application prospects [15–19]. New methods 
are being researched with the aim of enriching and 
improving biometric recognition technology, rather 
than replacing one method with another. The main 
goal is to use simple and reliable biometric features 
for identification. Currently, the insurance industry 
uses different methods to achieve facial, fingerprint, 
iris, genetic, and voiceprint recognition, as well as 
traditional documents, such as identification cards, 
for customer identity recognition. In practice, except 
for identification cards being the main  identification 
method, others are less commonly used.

Advantages of Bio-feature Recognition 
Technology Based on ECGs

Before the heart contracts, it generates an electri-
cal impulse, recorded by an electrocardiograph 
machine, thus forming a dynamic curve, known 
as the ECG, that varies rhythmically with the car-
diac cycle [20]. The normal ECG waveform gener-
ally includes the P wave, QRS complex, T wave, 
U wave, PR interval, QT interval, and ST segment, 
each of which has its own normal range in terms 
of morphology, voltage, and duration. ECGs, the 
primary method for cardiac electrophysiological 
examination, have been clinically applied for more 
than 120 years and are considered the gold standard 

for diagnosing cardiac arrhythmias. Moreover, 
ECGs meet the four basic requirements for biom-
etric identification of living people: universality, 
portability, and a basis on biometric features that 
are both unique and stable. Hence, ECGs may serve 
as a new biological feature for identity recognition, 
thereby extending conventional ECG examination 
to the field of information technology.

Universality

ECGs have the advantages of being non-invasive, 
non-destructive, safe, ecologically friendly, and easy 
to obtain. They have been widely applied and pro-
moted worldwide; have become a routine examina-
tion for outpatients and inpatients; are used in health 
examination centers; and serve as an essential test 
for patients with cardiovascular disease. Almost all 
medical institutions are equipped with electrocar-
diograph machines, which are operated by profes-
sional ECG technicians. Therefore, a living person’s 
ECG can be collected anytime and anywhere.

Portability

As society expands, people travel to various places 
for work, life, and tourism. In cases of emergency, 
people can have their ECGs recorded with widely 
available civilian ECG devices and then uploaded 
to a network for remote assistance in diagnosis. 
Alternatively, people can have their ECGs recorded 
at medical institutions for precise diagnosis and 
treatment. Therefore, the ECGs of living people are 
portable and can be collected at different locations 
worldwide.

Uniqueness

Theoretically, each person’s heart has unique elec-
trical footprints, which are detectable on ECGs. This 
uniqueness includes specific bio-feature recognition 
points, thus making ECGs inherently individual-
specific. Although the ECG waveform may undergo 
significant changes during an individual’s growth 
from birth to adulthood, it stabilizes and remains 
relatively consistent after adulthood. Moreover, 
12-, 15-, and 18-lead ECGs provide numerous char-
acteristic points for identification, similarly to the 
concept of using genetic short tandem repeat testing 
for identifying individuals.
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Stability

The ECG of a living person may show amplitude, 
timing, and minor waveform changes under dif-
ferent conditions, such as times, temperatures, 
heart rates, and health conditions. However, these 
changes do not affect the identification of a living 
person. Notably, the QRS waveform remains rela-
tively stable and unchanged, thereby demonstrating 
the stability of an individual’s ECG bio-features. 
Thus, the QRS waveform of the ECG can serve as 
the primary identifying characteristic and an impor-
tant basis for identification.

Compared with use of other biometric features, 
such as facial changes due to cosmetic surgery or 
damage, or fingerprint damage and counterfeiting, 
DNA identification is complex, costly, and time-
consuming. This method also faces challenges in 
cases of genetic mutations or identical twins. ECG 
bio-feature recognition technology overcomes these 
limitations, with its advantages of low cost, con-
venience, tamper resistance, and non- replicability. 
However, it also has several limitations, such as an 
inability to achieve identification when a living per-
son’s normal sinus rhythm is replaced by ventricu-
lar arrhythmias or when the heart stops beating.

Major Aspects of ECG Biometric 
Identification Technology

By definition, ECG biometric identification tech-
nology uses an electrocardiograph machine to 
record the electric activity waveform generated by 
the heart during each cardiac cycle from the body 
surface of a living person. This waveform then pro-
vides identification feature points for identity rec-
ognition and authentication.

(1) The standardized use of electrocardiograph 
machines should conform to national or inter-
national standards (digital electrocardiograph 
machines with permanent storage of raw data 
are recommended). The sampling frequency 
should be 0.05–150 Hz for adults and 0.05–250 
Hz for children [21].

(2) During ECG recording, accurate and fixed 
placement of the lead electrodes and consist-
ency of lead electrode positions should be 
ensured during every examination. Operators 

should receive standardized training to avoid 
lead electrode misconnections and waveform 
interference.

(3) The 12-, 15-, or 18-lead ECGs of a living person 
collected before and after insurance enrollment 
or on multiple occasions should be compared.

(4) Letters and symbols should be used to quali-
tatively mark the morphological characteristics 
of P-QRS-T-U waves in the 12-, 15-, or 18-lead 
ECG and compare them according to different 
waveforms. For example, the P wave should 
be upright, the QRS wave should be qRs, the 
ST segment should be normal, and the T wave 
should be upright, with a U wave.

(5) Quantitative analysis of the morphological char-
acteristics of P-QRS-T-U waves in the 12-, 15-, 
or 18-lead ECG should be performed. Start-
ing from lead I, the voltage, duration, notches, 
and humps of each wave should be carefully 
observed, recorded, and compared. If the wave-
form description is the same in lead I, lead II 
should subsequently be observed; if the wave-
form description remains the same in lead II, 
lead III should subsequently be observed, and so 
on, until all leads have been analyzed. Absolute 
and relative methods can be used to describe the 
waves. For the absolute method, if the voltage 
of the waveform is ≥0.5 mV, uppercase letters 
should be used for identification; if the volt-
age of waveform is <0.5 mV, lowercase letters 
should be used. For example, if the QRS wave in 
a lead appears as qR, the voltage of the q wave is 
<0.5 mV, and the voltage of the R wave is >0.5 
amV. For the relative method, in the comparison 
of two waveforms, the waveform with a larger 
amplitude should be marked with uppercase let-
ters, and the waveform with a smaller amplitude 
should be marked with lowercase letters. For 
example, if both the voltages of the R and the 
S waves in a lead are >0.5 mV (or <0.5 mV), 
the waveform with the larger amplitude should 
be marked with uppercase letters, and the other 
should be marked with lowercase letters. A spe-
cific morphological characteristic (such as volt-
age, duration, double peaks, notches, or humps) 
should be added as a suffix to describe the wave.

(6) Whether the examined ECGs are from the same 
person is determined through comparison of 
two or more ECGs.
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(7) Whether the examined ECGs are normal is deter-
mine through comparison of two or more ECGs.

(8) If the waveforms of two or more ECGs differ 
(possibly because of different settings on the 
electrocardiograph machine), thus potentially 
affecting the recognition decision, ECG experts 
can be asked to perform a preliminary qualitative 
analysis to assess the machine’s performance 
indicators and a quantitative analysis within an 
error range. If necessary (and if possible), a new 
ECG may be collected to increase the accuracy 
of ECG waveform recognition.

Features of ECG and Features 
Extraction for ECG Biometric 
Identification

Relevant International Studies

Since 2001, research on ECG biometric identifi-
cation outside China, primarily in engineering or 
biomedical fields, has been performed by using 
publicly available ECG databases. The research 
methods have evolved from early mathematical 
and signal processing comparisons to traditional 
machine learning models and, more recently, deep 
learning methods. All these studies have confirmed 
the feasibility and reliability of using ECGs for 
identity recognition. The relevant research findings 
are summarized in Table 1.

Relevant Domestic Studies

Domestic Engineering Studies

Since 2005, domestic engineering researchers have 
conducted studies on ECG biometric identifica-
tion. They have mainly used various algorithms to 
extract feature points from ECG signals, thus effec-
tively increasing the accuracy of ECG signal iden-
tity recognition. The relevant research findings are 
summarized in Table 2.

Domestic Medical Studies

Since 1988, Professor Li Zhongjian at the Institute 
of Electrocardiology of Zhengzhou University 
has conducted research on ECG biometric identi-
fication and was the first to apply related research 
results to the insurance industry. Before that time, 

no international reports had described using ECG 
examination technology for identifying living peo-
ple, thus making Professor Li the world’s first expert 
in using ECG examination technology for identify-
ing living people [43]. In 2005 and 2006, Professor 
Li trained two master’s students in ECG identity 
recognition and proposed the following academic 
viewpoints: (1) The “ECG waveform uniqueness” 
hypothesis [3] was proposed and then extended to 
the application of medical insurance cards [4, 44]. 
(2) Each person’s 12-lead ECG P-QRS-T-U wave 
contains unique ECG waveform features [45] (Table 
3 [4]). (3) Each living person’s ECG waveform is 
different, and has slightly different waveforms in 
qualitative and quantitative analysis [46]. (4) Under 
the influence of different environments, seasons, 
heart rates, times, medications, and other factors, the 
QRS waveform of the same living person remains 
relatively stable and essentially unchanged [47]. (5) 
Different regions (areas) have non-repeating ECG 
waveforms in adults [48]. (6) The QRS waveform 
of the ECG is tall, with minimal changes and vari-
ations, and therefore is suitable as an indicator for 
rapid artificial intelligence (AI)-based identity rec-
ognition [49]. Table 4 lists the relevant research 
findings from Professor Li Zhongjian’s team.

Technical Aspects of Using ECG for 
Identity Recognition in the Insurance 
Industry

The technical identification process of using ECG 
identity recognition in the insurance industry is shown 
in Figure 1. In identifying the customer’s identity for 
insurance purposes, the applicant’s questioned sam-
ple must be compared with the applicant’s known 
sample. The applicant’s known sample refers to the 
12-, 15-, or 18-lead ECG recorded before application 
for insurance, which can be extracted from an ECG 
database. The applicant’s questioned sample refers 
to the disease ECG recorded by the applicant when 
applying for a claim (single or multiple records).

Comparing the applicant’s questioned sample 
with the known sample includes primarily the fol-
lowing steps:

(1) Observe whether the questioned sample and 
known sample ECGs comply with national or 
international standards, with sampling frequen-
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cies of 0.05–150 Hz for adults and 0.05–250 Hz 
for children.

(2) Check whether the lead-electrode connections 
and placements are correct, to avoid misconnec-
tions and interference during ECG  recording.

(3) Observe whether the P-QRS-T-U complexes in 
the ECG are stable, clear, and distinguishable.

(4) Compare the morphologies, amplitudes, and 
time intervals of the applicant’s 12-, 15-, or 
18-lead ECG collected as the questioned sam-

Table 2 Domestic Engineering Studies and Results.

First 
Author

Year Identity Recognition Method

Wang [33] 2005 The improved Radial Basis Function (RBF) Network was used to develop a biometric 
identification system.

Zhuang [34] 2005 Feature points were extracted with the discrete wavelet transform, and the Euclidean minimum 
distance method was then used for identification.

Chen [35] 2006 Dynamic model parameters, adjusted with a Genetic Algorithm (GA) and Particle Swarm 
Optimization, were input into a neural network for identity recognition.

Lin [36] 2007 Autocorrelation Coefficient and Linear Discriminant Analysis (LDA) were used for recognizing a 
person’s identity.

Hao [37] 2010 Through computer processing of ECG images to obtain digital information and conducting non-
repeated experiments with bivariate analysis of data, identity recognition based on ECG was 
verified to be feasible.

Shi [38] 2011 The Dynamic Time Warping (DTW) algorithm was used to determine the optimal matching 
distance between heartbeat test data and various heartbeat templates.

Wang [39] 2012 Identification recognition was conducted based on single-lead ECG frequency band characteristics.
Chen [40] 2014 By measuring the preprocessing results through the signal-to-noise ratio and correlation coefficient, 

various classification and recognition methods were tested, and the most suitable method for ECG 
recognition was confirmed to be support vector machine (SVM) with small samples.

Huang [41] 2020 The fusion feature ECG signal recognition algorithm based on Hilbert vibration decomposition and 
Convolutional Neural Network has efficient recognition performance and good application prospects.

Dou [42] 2022 A quick connection design and extraction of feature points was achieved by increasing the number 
of convolutional layers and kernels.

Table 3 Each Segment of a Single Cardiac Cycle in a 12-Lead Electrocardiogram (ECG).

ECG Segment  
 
Direction  

 
Duration  

 
Number of 
Feature Points*

Upright  Inverted  Bidirectional  Non-Deviation  Absence

P wave  √  √  √   √  √  5
QRS complex        
 Q wave   √    √  √  3
 R wave  √     √  √  3
 S wave   √    √  √  3
T wave  √  √  √   √  √  5
U wave  √  √  √   √  √  5
P-R segment       √  1
ST segment  √  √   √   √  4
Q-T interval       √  1

Sum in lead I  5  6  3  1  6  9  30
Total in 12 leads  60  72  36  12  72  108  360

*A single cardiac cycle in one lead can have 30 feature points. With 12 leads, there are 30 × 12 = 360 feature points used for 
identity recognition [4].
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ple and the known sample, and perform quali-
tative and quantitative analyses. Qualitatively 
mark the morphological features of the P-QRS-
T-U complexes in the 12-, 15-, or 18-lead ECG 
with letters or symbols, and compare them 
according to the different waveform orders. 
Then perform quantitative analysis of the quali-
tatively described morphological features of 
the P-QRS-T-U complexes. Starting from lead 
I, carefully observe and record the voltages, 
durations, notches, humps, and other character-
istics for comparing the applicant’s questioned 
sample with the known sample. If the wave-
form description in lead I is the same, proceed 
to observe lead II. If the waveform description 
in lead II remains the same, continue to observe 
lead III, and so on, until all leads are analyzed. 
Use uppercase and lowercase letters to indicate 
the size of each waveform, followed by specific 

morphological features (e.g., voltage, dura-
tions, double peak, notches, or humps) in the 
description.

On the basis of the comparison results between the 
applicant’s questioned sample and the known sam-
ple, whether the ECGs from multiple collections 
are from the same person, and whether the disease 
ECGs belong to the same person, can be determined, 
thus confirming whether the known sample meets 
the insurance company’s claim disease criteria.

Future Outlook

Previous research results have fully demonstrated the 
stability of the ECG, particularly the morphology of 
the QRS complex, which is an important cornerstone 
of ECG identity recognition. Simultaneously, with 
the rapid development of AI and machine learning 

Figure 1 Technical Aspects of Using ECG for Identity Recognition in the Insurance Industry.
*12-, 15-, or 18-lead electrocardiogram (ECG).
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based on large-scale ECG databases, this charac-
teristic of ECG is used. Computer-based personal 
identity recognition software systems are expected 
to be developed by using digital signal processing, 
hierarchical classification, pattern recognition, and 
other technologies to achieve rapid computer-based 
personal identity recognition. This future trend in 
the development of ECG biometric recognition 
technology is expected. Moreover, the future may 
witness transitions from recognition by experts to 
ordinary people, and from human eye recognition to 
AI recognition. Furthermore, ECG biometric recog-
nition technology, after being widely applied in the 
insurance industry, will ideally continually expand 
to other fields, such as medical insurance, banks, 
judiciary, public security, military, government, and 
enterprise areas, to better promote social stability 
and national security.
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