290 research outputs found

    AdS Black Hole with Phantom Scalar Field

    Full text link
    In this paper, we present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates xx and yy, and which are parameterized by the parameter α\alpha. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively same as those of AdS Schwarzschild black hole. Namely there exists a minimal temperature, the large black hole is thermodynamically stable , while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS spacetime in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.Comment: 6 pages, 8 figure

    A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B

    Get PDF
    Satellite-based detection of methane (CH4) point sources is crucial in identifying and mitigating anthropogenic emissions of CH4, a potent greenhouse gas. Previous studies have indicated the presence of CH4 point source emissions from coal mines in Shanxi, China, which is an important source region with large CH4 emissions, but a comprehensive survey has remained elusive. This study aims to conduct a survey of CH4 point sources over Shanxi's coal mines based on observations of the Advanced Hyperspectral Imager (AHSI) on board the Gaofen-5B satellite (GF-5B/AHSI) between 2021 and 2023. The spectral shift in centre wavelength and change in full width at half-maximum (FWHM) from the nominal design values are estimated for all spectral channels, which are used as inputs for retrieving the enhancement of the column-averaged dry-air mole fraction of CH4 (ΔXCH4) using a matched-filter-based algorithm. Our results show that the spectral calibration on GF-5B/AHSI reduced estimation biases of the emission flux rate by up to 5.0 %. We applied the flood-fill algorithm to automatically extract emission plumes from ΔXCH4 maps. We adopted the integrated mass enhancement (IME) model to estimate the emission flux rate values from each CH4 point source. Consequently, we detected CH4 point sources in 32 coal mines with 93 plume events in Shanxi province. The estimated emission flux rate ranges from 761.78 ± 185.00 to 12 729.12 ± 4658.13 kg h−1. Our results show that wind speed is the dominant source of uncertainty contributing about 84.84 % to the total uncertainty in emission flux rate estimation. Interestingly, we found a number of false positive detections due to solar panels that are widely spread in Shanxi. This study also evaluates the accuracy of wind fields in ECMWF ERA5 reanalysis by comparing them with a ground-based meteorological station. We found a large discrepancy, especially in wind direction, suggesting that incorporating local meteorological measurements into the study CH4 point source are important to achieve high accuracy. The study demonstrates that GF-5B/AHSI possesses capabilities for monitoring large CH4 point sources over complex surface characteristics in Shanxi.</p

    Cardiovascular health status in Chinese adults in urban areas: Analysis of the Chinese Health Examination Database 2010

    Get PDF
    Background: The American Heart Association (AHA) recently developed definitions of cardiovascular health for adults and children based on 7 cardiovascular disease risk factors or health behaviors. We applied this new construct to examine the cardiovascular health status in adult Chinese urban residents. Methods: Data of 1,012,418 subjects aged 20–65 years (55% were men; mean age, 42.4 years) who received health examination at 58 health examination centers across China was analyzed. The AHA ideal health behaviors index and ideal health factor index were evaluated among the subjects. Results: Only 0.6% of male and 2.6% of female subjects met all 7 health components, and only 39.1% of the subjects met 5 or more components of ideal cardiovascular health. The prevalence of “ideal”, “intermediate” and “poor” cardiovascular health was 1.5%, 33.9% and 64.6%, respectively. Conclusion: About two-thirds of the adult Chinese urban population has “poor” cardiovascular health. Comprehensive individual and population-based interventions must be developed to improve cardiovascular health status in China

    Experimental Study on the Influence of Slickwater on Shale Permeability

    Get PDF
    There are two diametrically opposite views of the influence of slickwater on shale permeability among scholars at home and abroad. We used the shale outcrops rock samples from the Lower Silurian Longmaxi Formation in Sichuan Basin. The permeability of these dry samples before and after immersion in different solution systems were tested by pulse attenuation method. The experimental results show that the impregnation of different slickwater components and standard salt solution can promote the increase of the permeability of shale samples. The stress sensitivity of shale samples after liquid immersion is medium weak to weak. The sample stress sensitivity is weak after soaked by the synergist solution and Drag reducing agent solution, and the sensitivity of the sample stress is medium weak after immersed by the standard saline solution, defoamer solution and antiswelling solution; The Ki/K0 of the shale sample after liquid immersion on σi/σ0 is consistent with the exponential stress sensitive evaluation model. With the increase of soaking time, the increase of sample permeability increases first and then decreases

    Establishment and Application of Fractal Capillary Tube Bundle Model of Porous Media

    Get PDF
    In view of the problem of statistical regression constant in the model of capillary tube bundles in the porous media, a capillary bundle percolation model with fractal geometry was reconstructed. The function expressions of the fractal coefficient and Kozeny constant were deduced. The relationship between the macroscopic fractal properties of porous media and the fractal dimension and the micro pore parameters were obtained. Results show: Fractal coefficient is a function of fractal dimension, maximum pore radius and minimum pore radius; The macroscopic physical properties of porous media are a function of the fractal dimension and the radius of the capillary (the maximum capillary radius and the minimum capillary radius). The expression does not contain any empirical or experimental constants. In the fractal capillary percolation model, the relationship between the three kinds of surface volume, skeleton volume and pore volume are the same as the traditional equal diameter straight capillary bundle model. The Kozeny constant can be accurately described by the function expression of the z-h coefficient, which is used for correcting the difference between real and ideal porous media model

    Evidence of Carbon Uptake Associated with Vegetation Greening Trends in Eastern China

    Get PDF
    Persistent and widespread increase of vegetation cover, identified as greening, has been observed in areas of the planet over late 20th century and early 21st century by satellite-derived vegetation indices. It is difficult to verify whether these regions are net carbon sinks or sources by studying vegetation indices alone. In this study, we investigate greening trends in Eastern China (EC) and corresponding trends in atmospheric CO₂ concentrations. We used multiple vegetation indices including NDVI and EVI to characterize changes in vegetation activity over EC from 2003 to 2016. Gap-filled time series of column-averaged CO₂ dry air mole fraction (XCO₂) from January 2003 to May 2016, based on observations from SCIAMACHY, GOSAT, and OCO-2 satellites, were used to calculate XCO₂ changes during growing season for 13 years. We derived a relationship between XCO₂ and surface net CO₂ fluxes from two inversion model simulations, CarbonTracker and Monitoring Atmospheric Composition and Climate (MACC), and used those relationships to estimate the biospheric CO₂ flux enhancement based on satellite observed XCO₂ changes. We observed significant growing period (GP) greening trends in NDVI and EVI related to cropland intensification and forest growth in the region. After removing the influence of large urban center CO₂ emissions, we estimated an enhanced XCO₂ drawdown during the GP of −0.070 to −0.084 ppm yr⁻¹. Increased carbon uptake during the GP was estimated to be 28.41 to 46.04 Tg C, mainly from land management, which could offset about 2–3% of EC’s annual fossil fuel emissions. These results show the potential of using multi-satellite observed XCO₂ to estimate carbon fluxes from the regional biosphere, which could be used to verify natural sinks included as national contributions of greenhouse gas emissions reduction in international climate change agreements like the UNFCC Paris Accord

    Image to Multi-Modal Retrieval for Industrial Scenarios

    Full text link
    We formally define a novel valuable information retrieval task: image-to-multi-modal-retrieval (IMMR), where the query is an image and the doc is an entity with both image and textual description. IMMR task is valuable in various industrial application. We analyze three key challenges for IMMR: 1) skewed data and noisy label in metric learning, 2) multi-modality fusion, 3) effective and efficient training in large-scale industrial scenario. To tackle the above challenges, we propose a novel framework for IMMR task. Our framework consists of three components: 1) a novel data governance scheme coupled with a large-scale classification-based learning paradigm. 2) model architecture specially designed for multimodal learning, where the proposed concept-aware modality fusion module adaptively fuse image and text modality. 3. a hybrid parallel training approach for tackling large-scale training in industrial scenario. The proposed framework achieves SOTA performance on public datasets and has been deployed in a real-world industrial search system, leading to significant improvements in click-through rate and deal number. Code and data will be made publicly available
    corecore