103 research outputs found

    Characterization and identification of the integrin family in silkworm, Bombyx mori

    Get PDF
    YesAs an important economic insect, Bombyx mori is also a useful model organism for lepidopteran insect. Integrins are evolutionarily conserved fromsponges to humans, and play vital roles inmany physiological and pathological processes. To explore their diverse functions of integrins in insect, eleven integrins including sixα and five β subunitswere cloned and characterized fromsilkworm. Our results showed that integrins fromsilkwormown more family members compared to other invertebrates. Among those α subunits, integrins α1, α2, and the other four subunits belong to PS1, PS2, and PS3 groups, respectively. The β subunits mainly gather in the insect βν group except the β1 subunit which belongs to the insect β group. Expression profiles demonstrated that the integrins exhibited distinct patterns, but were mainly expressed in hemocytes. α1 and β2 subunits are the predominant ones either in the embryogenesis or larva stages. Interestingly, integrins were significantly up-regulated after stimulated by 20-hydroxyecdysone (20-E) in vivo. These results indicate that integrins performdiverse functions in hemocytes of silkworm. Overall, our results provide a newinsight into the functional and evolutionary features of integrins.National Basic Research Programof China (No. 2012cb114603), the Research Fund for the Doctoral Program of Higher Education of China (20130182110003), the Natural Science Foundation of Chongqing (cstc2013jcyjys0007), and the Fundamental Research Funds for the Central Universities (SWU111014)

    Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition

    Get PDF
    Frequent wildfires associated with emplacement of the Central Atlantic Magmatic Province (CAMP) are thought to have been important drivers of two significant changes in terrestrial plant communities and diversity during the Triassic-Jurassic Mass Extinction (TJME, ca. 201.51 Ma). ​However, it remains to be investigated whether these two changes are potentially related to different wildfire types. To better understand this relationship, we used a new method to reanalyze fossil pollen and spores across the Triassic-Jurassic transition in the Jiyuan Basin from the North China Plate. Results show that two peaks in wildfire frequency experienced different types of wildfires, with each linked to significant changes in plant communities and diversity losses. In the first wildfire peak, canopy fires dominated and are accompanied by significant losses of canopy forming plants, while in the second wildfire peak, ground cover fires dominated accompanied by significant losses of ground cover plants. ​Changes in atmospheric humidity conditions were an important control on the two different wildfire peaks. Relatively humid climatic conditions corresponded to the prevalence of canopy fires and hindered the spread and development of ground cover fires in wet surface conditions. Conversely, relatively arid climatic conditions corresponded with the prevalence of ground cover fires in dry surface environments. Our results provide a potential relationship between terrestrial plant communities and wildfire types, which is important to further understanding of terrestrial environmental and floral changes driven by Large Igneous Provinces

    Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition

    Get PDF
    Frequent wildfires associated with emplacement of the Central Atlantic Magmatic Province (CAMP) are thought to have been important drivers of two significant changes in terrestrial plant communities and diversity during the Triassic-Jurassic Mass Extinction (TJME, ca. 201.51 Ma). ​However, it remains to be investigated whether these two changes are potentially related to different wildfire types. To better understand this relationship, we used a new method to reanalyze fossil pollen and spores across the Triassic-Jurassic transition in the Jiyuan Basin from the North China Plate. Results show that two peaks in wildfire frequency experienced different types of wildfires, with each linked to significant changes in plant communities and diversity losses. In the first wildfire peak, canopy fires dominated and are accompanied by significant losses of canopy forming plants, while in the second wildfire peak, ground cover fires dominated accompanied by significant losses of ground cover plants. ​Changes in atmospheric humidity conditions were an important control on the two different wildfire peaks. Relatively humid climatic conditions corresponded to the prevalence of canopy fires and hindered the spread and development of ground cover fires in wet surface conditions. Conversely, relatively arid climatic conditions corresponded with the prevalence of ground cover fires in dry surface environments. Our results provide a potential relationship between terrestrial plant communities and wildfire types, which is important to further understanding of terrestrial environmental and floral changes driven by Large Igneous Provinces

    Four volcanically driven climatic perturbations led to enhanced continental weathering during the Late Triassic Carnian Pluvial Episode

    Get PDF
    The arid climate of the Late Triassic was interrupted by a particularly humid episode known as the Carnian Pluvial Episode (CPE; ca. 234–232 million years ago). The CPE is often linked to eruptions in the Wrangellia Large Igneous Province (LIP), and is assumed to have led to global warming, enhanced weathering, water deoxygenation, and biotic changes. However, direct evidence for a temporal link between volcanic activity and chemical weathering has not yet been established due to the lack of comprehensive records across the CPE. In this study, geochemical and mineralogical analyses are applied to a lacustrine stratigraphic succession of the Jiyuan Basin (North China) that captures the CPE in high resolution. We identify four distinct pulses of enhanced continental chemical weathering characterized by elevated Chemical Index of Alteration values and kaolinite contents. These peaks in continental weathering coincide with Hg/TOC enrichments and negative organic carbon isotope excursions that mark four short (~400 kyr) but intense pulses of Wrangellia LIP volcanism. In combination with signs of increased humidity, our findings provide direct and independent evidence that Wrangellia LIP eruptions significantly altered CPE chemical weathering rates in response to global warming and wetting. The lake experienced eutrophication and water deoxygenation after each volcanic pulse but the swift recovery of carbon isotopes suggests that the system rapidly returned to conditions prior to the volcanic perturbation. Organic carbon burial facilitated by widespread dysoxic and anoxic waters, and CO2 consumption via enhanced weathering likely played crucial roles in the rapid climatic recovery after each volcanic pulse

    Floral response to the Late Triassic Carnian Pluvial Episode

    Get PDF
    The Late Triassic Carnian Pluvial Episode (CPE; ca. 234–232 Ma) was characterized by dramatic global temperature and humidity increases, which in many terrestrial settings was accompanied by changes from arid to humid vegetation types. This study reviews current evidence of terrestrial floral composition and distribution during the CPE and analyzes spatial and temporal variation with relation to potential environmental driving mechanisms. Available evidence suggests the CPE was a globally significant event that triggered significant increases in the abundance of ferns and hygrophytes in terrestrial floras and freshwater algae in fluvial and lacustrine settings. These changes ended a long interval of relatively arid terrestrial climatic conditions since the early Triassic and are linked temporally with eruptions of the oceanic plateau Wrangellia Large Igneous Province (LIP). The massive release of greenhouse gasses including isotopically light CO2 during 3–4 distinct pulses of Wrangellia volcanism appears to have been the main driver of CPE climate change. Each pulse enhanced global atmospheric circulation and the hydrological cycle and resulted in changes from arid to humid conditions that affected floral abundance and composition. Higher terrestrial primary productivity in humid phases facilitated increased burial of terrestrial organic carbon and led to the recommencement of peat accumulation, ending the coal gap that had persisted since the earliest Triassic times. Enhanced movement of carbon from the atmosphere through the biosphere into the geosphere may have counteracted the warming effects of Wrangellia volcanic greenhouse gas emissions and ultimately led to the return of a steady climate state that terminated the warm and humid conditions of the CPE

    Sustainable ultra‐strong thermally conductive wood‐based antibacterial structural materials with anti‐corrosion and ultraviolet shielding

    Get PDF
    In light of the uprising global development on sustainability, an innovative and environmental friendly wood-based material derived from natural pinewood has been developed as a high-performance alternative to petrochemical-based materials. The wood-based functional material, named as BC-CaCl2, is synthesized through the coordination of carboxyl groups (−COOH) present in pinewood with calcium ions (Ca2+), which facilitates the formation of a high-density cross-linking structure through the combined action of intermolecular hydrogen bonds. The as-prepared BC-CaCl2 exhibits excellent tensile strength (470.5 MPa) and flexural strength (539.5 MPa), establishing a robust structural basis for the materials. Meanwhile, BC-CaCl2 shows good water resistance, thermal conductivity, thermal stability, UV resistance, corrosion resistance, and antibacterial properties. BC-CaCl2 represents a viable alternative to petrochemical-based materials. Its potential application areas include waterproof enclosure structure of buildings, indoor underfloor heating, outdoor UV resistant protective cover, and anti-corrosion materials for installation engineering, and so forth

    Anomalous stopping of laser-accelerated intense proton beam in dense ionized matter

    Full text link
    Ultrahigh-intensity lasers (1018^{18}-1022^{22}W/cm2^{2}) have opened up new perspectives in many fields of research and application [1-5]. By irradiating a thin foil, an ultrahigh accelerating field (1012^{12} V/m) can be formed and multi-MeV ions with unprecedentedly high intensity (1010^{10}A/cm2^2) in short time scale (\simps) are produced [6-14]. Such beams provide new options in radiography [15], high-yield neutron sources [16], high-energy-density-matter generation [17], and ion fast ignition [18,19]. An accurate understanding of the nonlinear behavior of beam transport in matter is crucial for all these applications. We report here the first experimental evidence of anomalous stopping of a laser-generated high-current proton beam in well-characterized dense ionized matter. The observed stopping power is one order of magnitude higher than single-particle slowing-down theory predictions. We attribute this phenomenon to collective effects where the intense beam drives an decelerating electric field approaching 1GV/m in the dense ionized matter. This finding will have considerable impact on the future path to inertial fusion energy.Comment: 8 pages, 4 figure

    Energy loss enhancement of very intense proton beams in dense matter due to the beam-density effect

    Full text link
    Thoroughly understanding the transport and energy loss of intense ion beams in dense matter is essential for high-energy-density physics and inertial confinement fusion. Here, we report a stopping power experiment with a high-intensity laser-driven proton beam in cold, dense matter. The measured energy loss is one order of magnitude higher than the expectation of individual particle stopping models. We attribute this finding to the proximity of beam ions to each other, which is usually insignificant for relatively-low-current beams from classical accelerators. The ionization of the cold target by the intense ion beam is important for the stopping power calculation and has been considered using proper ionization cross section data. Final theoretical values agree well with the experimental results. Additionally, we extend the stopping power calculation for intense ion beams to plasma scenario based on Ohm's law. Both the proximity- and the Ohmic effect can enhance the energy loss of intense beams in dense matter, which are also summarized as the beam-density effect. This finding is useful for the stopping power estimation of intense beams and significant to fast ignition fusion driven by intense ion beams
    corecore